Büro Aydınlatma Alternatiflerinin Bütünleyici Aydınlatma Açısından Karşılaştırılması

Işığın görsel etkilerinin yanı sıra biyolojik ve davranışsal etkilerinin de olduğu bilinmektedir. Bu etkiler görüntü oluşturmayan ya da görsel olmayan tepkiler olarak tarif edilmektedir. Işığın görsel ve görsel olmayan etkilerini dikkate alan aydınlatma tasarımı bütünleşik aydınlat- ma ve insan odaklı aydınlatma gibi terimlerle ifade edilmektedir. Bununla birlikte insan odaklı aydınlatma anlamında işleve göre sağlan- ması gereken aydınlık düzeyi ve renk sıcaklığı konusunda henüz bir fikir birliği yoktur. Bu çalışmada bir büro hacminde aydınlık düzeyi ve benzer renk sıcaklığı bakımından farklı dört statik aydınlatma ve bir dinamik aydınlatma senaryosu oluşturulmuştur. Bu senaryolar ışığın görsel ve görsel olmayan etkileri açısından istatistiksel analiz ve hesaplama yolu ile karşılaştırılmıştır. Işığın biyolojik potansiyelini nicelik olarak belirlemek üzere deney hacmindeki her çalışma masası için melanopik eşdeğer günışığı aydınlık düzeyi hesaplanmıştır. Bu hesap- lamada göz hizasında ölçülen tayfsal erkesel aydınlık veri alınmıştır. İstatistiksel değerlendirme, uzun ve kısa süreli çalışma olmak üzere iki farklı koşul için yapılmıştır. Her senaryonun iki hafta boyunca uygulandığı uzun süreli çalışmaya deney hacminde çalışan akademisyenler katılmıştır. Her senaryonun 20 dakika süreyle uygulandığı kısa süreli çalışmanın katılımcıları akademisyenler, doktora ve yüksek lisans öğrencileri olmuştur. Yüksek aydınlık düzeyi ve/veya soğuk ışık renginin uyanık, dinlenmiş ve enerjik hissetmede etkili olduğu ortaya çık- mıştır. Bununla birlikte, katılımcıların tercihi genel olarak ılık renkli ışık ile oluşturulan yüksek aydınlık düzeyinden yana olmuş

Comparison of Office Lighting Alternatives in Terms of Integrative Lighting

It is well-known that light has biological and behavioural effects in addition to its visual effects. These effects are described as non-image-form- ing or non-visual responses. Lighting design considering the visual and non-visual effects of light is expressed in terms such as integrated lighting or human centric lighting. However, there is still no consensus on the illuminance and colour temperature to be provided depending on the type of task or activity in the sense of human centric lighting. The aim of this study is to determine the lighting conditions in an office that are bio- logically effective, meet the visual requirements and at the same time is rated as positive by the occupants. For this purpose, four static lighting scenarios and one dynamic lighting scenario are created in an office room, which differ in terms of illuminance and correlated colour temper- ature. These scenarios are compared with regard to visual and non-visual effects of light through surveys and α-opic equivalent daylight (D65) illuminance calculations. The composition of static scenarios are ‘500 lx, 4000 K’, ‘1000 lx, 5500 K’, ‘1250 lx, 4000 K’, ‘1500 lx, 5500 K’. The limits of the dynamic scenario are ‘500 lx-1000 lx’ and ‘3500 K-5500 K’. These values are provided on the task area of the worktable chosen as a reference to adjust the scenarios through the lighting control system. In order to determine the biological potential of light quantitatively, the melanopic equivalent daylight illuminance was calculated for each working table in the office room. The spectral irradiance data measured at eye level were used in this calculation. In addition to the questions about the determination of the emotional states of the participants, questions about the evaluation of the lighting scenario with regard to illuminance, colour temperature of light, influence on the working conditions and ambient atmosphere were also included in the questionnaire. The statistical evaluation of the survey data was carried out for two different conditions, a long-term and a short-term study. Academic staff working in the mock-up room participated in the long-term study, in which each scenario was implemented for 2 weeks. The participants of the short-term study, in which each scenario was applied for 20 minutes, were academicians, doctoral and master’s students. It became apparent that high illuminance and/or cool colour of light are effective in feeling alert, rested and energetic. However, the preference of the participants was generally in favour of the neutral light colour. Regarding illuminance 500 lx was evaluated as low and 1500 lx as high. The scenario that was found to be the most positive in terms of the illuminance, the colour temperature of light and its effect on the working conditions in both long- and short-term study was ‘1250 lx, 4000 K’. The appreciation of the neutral light colour can also play a role in this result. It was found that the variable ambient atmosphere in dynamic lighting is more natural than static scenarios with 500 lx and 1000 lx. Preferences may conflict with each other in terms of visual and non-visual effects of light. Instead of continuously using scenarios with high illuminance and/or cool light colour, the implementation in shorter periods of time, in which people have to feel more alive and alert, can be a rational and balanced solution. The results of this study, in which the visual and non-visual effects of lighting scenarios with different illuminances and colour temperatures on office workers are assessed, can be considered to determine the optimal conditions for inte- grated lighting in office

___

  • aan het Rot, M., Moskowitz, D. S., and Young, S. N. (2008). Expo- sure to bright light is associated with positive social interac- tion and good mood over short time periods: A naturalistic study in mildly seasonal people. Journal of Psychiatric Rese- arch, 42(4), 311-319.
  • Bellia, L., Blaszczak, U., Fragliasso, F., and Gryko, L. (2020). Matc- hing CIE illuminants to measured spectral power distributi- ons: A method to evaluate non-visual potential of daylight in two European cities, Solar Energy, 208, 830-858.
  • Berson, D. M., Dunn, F. A., and Takao, M. (2002). Phototrans- duction by retinal ganglion cells that set the circadian clock. Science, 295, 1070-1073.
  • Biggs, S. (2015), The Ritchie Centre, Monash University. https:// www.healthdirect.gov.au/partners/sleep-health-foundation
  • Canazei, M., Dehoff, P., Staggl, S., and Pohl, W. (2014). Effects of dynamic ambient lighting on female permanent morning shift workers, Lighting Res. Technol, (46), 140-156.
  • de Kort, Y. A. W., and Smolders, K. C. H. J. (2010). Effects of dyna- mic lighting on office workers: First results of a field study with monthly alternating settings, Lighting Res Technol, (42), 345-360.
  • European Committee for Standardization (2019). Light and ligh- ting - Lighting of work places - Part 1: Indoor work places, EN 12464-1. Brussels: CEN.
  • European Committee for Standardization (2017). Quantifying ir- radiance for eye-mediated non-image-forming effects of light in humans, PD CEN/TR 16791. Brussels: CEN.
  • FGL, Fördergemeinschaft Gutes Licht, Guide to human centric lighting (HCL), licht.wissen 21, https://www.licht.de/filead- min/Publications/licht-wissen/1809_lw21_E_Guide_HCL_ web.pdf
  • Figueiro, M. G., Steverson, B., Heerwagen, J., Kampschroer, K., Hunter, C. M., Gonzales, K., Plitnick, B., and Rea, M. S. (2017). The impact of daytime light exposures on sleep and mood in office workers, Sleep Health, 3, 204-2015.
  • Hattar, S., Liao, H. W., Takao, M., Berson, D. M., and Yau, K. W. (2002). Melanopsin-containing retinal ganglion cells: Archi- tecture, projections, and intrinsic photosensitivity. Science, 295, 1065-1070.
  • Horne, J. A., Östberg, O. (1976). A self assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4, 97-110.
  • Houser, K. W., Boyce, P. R., Zeitzer, J. M., and Herf, M. (2021). Human-centric lighting: Myth, magic or metaphor? Lighting Res Technol, 53, 97-118.
  • International Commission on Illumination, (2020a). What to document and report in studies of ipRGC-influenced res- ponses to light, CIE TN 011:2020, https://files.cie.co.at/CIE_ TN_011_2020.pdf.
  • International Commission on Illumination, (2020b). CIE S 026 Toolbox. v1.49a, https://cie.co.at/publications/cie-system- metrology-optical-radiation-iprgc-influenced-responses- light-0.
  • International Commission on Illumination, (2019). CIE Position statement on non-visual effects of light, Recommending pro- per light at the proper time, https://cie.co.at/files/CIE%20 Position%20Statement%20-%20Proper%20Light%20at%20 the%20Proper%20Time%20(2019)_0.pdf.
  • International Commission on Illumination, (2011). Internatio- nal lighting vocabulary. CIE S017/E. Vienna: CIE. https://cie. co.at/e-ilv.
  • Jolles, J., Houx, P. J., Van Boxtel, M. P. J., and Ponds, R. W. H. M. (1995). Maastricht Aging Study: Determinants of Cognitive Aging. Maastricht, The Netherlands: Neuropsych Publishers. Lucas, R. J., et al. (2014). Measuring and using light in the mela- nopsin age, Trends in Neurosciences, 37(1), 1-9.
  • Mills, P. R., Tomkins, S., and Schlangen, L. J. M. (2007). The effect of high correlated colour temperature office lighting on emp- loyee wellbeing and work performance. Journal of Circadian Rhythms, 5, 2.
  • Patania, F., Gagliano, A., Nocera, F., Galesi, A., and Caserta, J. (2012). The dynamic lighting into the working environment, Int J Design & Nature and Ecodynamics, 7(4), 394-408.
  • PHO, 2008-2012. PROMIS-Sleep disturbance-short form-Adult, PROMIS Health Organization and PROMIS Cooperative Gro- up.
  • Schlangen, L. J. M., and Price, L. L. A. (2021). The lighting envi- ronment, its metrology, and non-visual responses, Frontiers in Neurology, https://doi.org/10.3389/fneur.2021.624861
  • Schlangen, L., and Price, L. (2019). Report on the workshop: Use and application of the new CIE S 026/E:2018, Metrology for ipRGC-influenced responses to light “Specifying light for its eye-mediated non-visual effects in humans”. Proceedings of the 29th CIE Session, Washington D.C., USA, June 14-22, 114- 118.
  • Schlangen, L. J. M., Verhaegh, J., Denissen, A. J. M., Talen, H. J., Herremans, H. M. L., Bikker, J. W., de Ruyter, B., and Lem- mens, P. M. C. (2015). Workplace illumination effects on acu- ity, cognitive performance and well-being in older and young people, 28th CIE Session, Manchester, United Kingdom, 87- 95.
  • Sliney, D. (2019). Retinal Exposure assesment-horizontal or verti- cal alpha irradiance or illuminance? Proceedings of the 29th CIE Session, Washington D.C., USA, June 14-22, 127-133.
  • Smolders, K. C. H. J., de Kort, Y. A. W, and Cluitmans, P. J. M. (2012). A higher illuminance induces alertness even during office hours: Findings on subjective measures, task perfor- mance and heart rate measures, Physiology & Behaviour, 107, 7-16.
  • Tonello, G., de Borsetti, N. H., Borsetti, H., Tereschuk, L., and Lo- pez Zigaran, S. (2019). Perceived well-being and light-reactive hormones: An exploratory study, Lighting Res Technol, 51, 184-205.
  • Van der Elst, W., van Boxtel, M. P. J., van Breukelen, G., and Jolles, J. (2006). The letter digit substitution test: Normative data for 1858 healthy participants aged 24-81 from the Maastricht aging study (MAAS): Influence of age, education, and sex. Jo- urnal of Clinical and Experimental Neuropsychology, 28, 998- 1009.
  • Viola, A. U., James, L. M., Schlangen, L. J. M., and Dijk, D. J. (2008) Blue-enriched white light in the workplace impro- ves self-reported alertness, performance and sleep quality. Scandinavian Journal of Work, Environment and Health, 34, 297-306