Enerji Etkin Yerleşme Dokusu ve Bina Tasarımına Yönelik Parametrik Bir Model Önerisi: Ilımlı-Nemli İklim Bölgesi

Kentsel yerleşmeler küresel enerji tüketiminin önemli bölümlerinden sorumlu oldukları için yeni geliştirilecek yerleşmelerin enerji etkin olarak tasarlanması güncel ve önemli bir yaklaşım olarak değerlendirilmektedir. Bu doğrultuda çalışmada enerji etkin yerleşme dokusu ve bina tasarımına yönelik geliştirilen parametrik bir model önerisinin sunulması amaçlanmıştır. Modelde tasarım parametrelerinin bina enerji tüketimi üzerindeki etki düzeylerini değerlendirmek için performans odaklı bir simülasyon yöntemi kullanılarak tasarım aşamasına yönelik uygun çözümlerin üretilmesi hedeflenmiştir. Önerilen model, ılımlı-nemli iklim bölgesinde yer alan ve hızlı bir kentsel dönüşüm sürecinden geçen İstanbul için uygulanmıştır. Belirlenen yerleşme dokusu ve binaya ilişkin tasarım parametrelerinin (plan tipi, kat sayısı, H/W oranı, yerleşme tipi) kombinasyonlarıyla 18 senaryo alternatifi üretilerek farklı ölçeklerde (yerleşme, bina, bina kabuğu, kontrol sistemleri) alınan tasarım kararlarının referans binanın enerji performansına etkileri analiz edilmiştir. Yerleşmelerin geometrisi, binaların birbirlerine göre ko- numlarına bağlı olarak güneş erişim düzeylerini kontrol etmekte ve enerji performansını etkilemektedir. İstanbul için konutlarda ısıtma enerjisi tüketimi soğutma ve aydınlatma enerjisine kıyasla yüksektir; dolayısıyla, ısıtma enerjisi tüketiminin azaltılabilmesi için yüksek güneş erişimi sağlayan düşük H/W oranlarına sahip ve ayrık nizamda konumlanmış binaların yer aldığı yerleşme dokuları öne çıkmaktadır. Enerji analizlerine göre, tasarım sürecinde alınan doğru tasarım kararlarıyla kurulan yerleşmelerde diğer alternatiflere kıyasla toplam enerji tüke- timinde %26 oranına varan düşüş sağlanmış; bina kabuğu optimizasyonu ve güneş kontrol sistemlerinin entegrasyonuyla binaların enerji performansının %19 oranına kadar iyileştirilebileceği tespit edilmiştir. Yüksek enerji performansına sahip binalar ve sürdürülebilir yerleşme- lere yönelik olarak tasarım kararlarının önemini vurgulayan bu çalışmada sunulan yaklaşım, karar verici paydaşlar için alternatif uygulamaları sentezleyerek kentsel planlama alanındaki mevcut boşluğun doldurulmasına katkı sağlamayı hedeflemekte

A Parametric Model Proposal for Energy Efficient Settlement Texture and Building Design: Temperate-Humid Climate Zone

Energy consumption in urban areas is constantly increasing to satisfy human needs that are shaped in line with developing technology and changing life conditions. Currently, urban areas account for three-quarters of global primary energy use and 70% of the world’s greenhouse gas emissions (UN-Habitat, 2020). It is extremely important to transform existing urban settlements considering energy-efficient solutions to keep the natural balance for ensuring a more sustainable world. Thus, the design of settlements is held responsible not only for the development of common urban spaces but also for the energy performance of buildings depending on the complex settlement geometry. Therefore, many different variables should be integrated into the settlement design process to provide optimum conditions for buildings by reducing heating, cooling, and lighting energy consumption. Regarding this goal, the proposed model aimed to reveal the interaction between settlement geometry and building form with a parametric approach by comparing the impact level of each design parameter related to settlement and building on building energy performance at different scales. A performance-oriented simulation method was used to assess settlement scenarios generated from simplified urban geometries to narrow down design options regarding the principles of early design stage exploration and iteration. The approach was implemented in Istanbul (temperate-humid climate), where ongoing urban renewal has already been changing existing settlement textures and increasing urban density, for making a significant contribution to the country’s economy by offering sustainable measures. In this framework, a four-staged model has been proposed to develop suitable design solutions via the determination of energy-efficient values for the design parameters providing minimum energy consumption for a reference building in settlement texture. At the first stage, parameters related to climate, user, settlement texture, building, and active building sub-systems were defined based on the result of detailed research regarding related standards, regulations, and statistical data to establish reference building. At the second stage, as the outcome of the various combinations of identified values for design parameters related to settlement texture and building (plan type, number of floors, H/W ratio, settlement type), 18 settlement scenario alternatives composed of exactly identical buildings were generated. In the third stage, the effect of each design parameter on building energy performance was evaluated by calculating annual heating, cooling and lighting energy consumption per module for reference building defined in scenarios. Within this scope, respectively, the design parameters related to settlement and building (plan type, number of floors, H/W ratio, and settlement type), building envelope (opaque envelope layering and transparency ratio) and building control systems (solar control) were analysed from upper scale to lower scale by presenting the results comparatively to reveal energy efficiency level obtained from each design alternatives. In the fourth stage, due to the inability to determine the absolute solution in urban design (Oke, 1988), the data obtained as a result of the comprehensive evaluations were compiled for Istanbul in a sample application format on how decisions to be taken for the design parameters affect the energy performance of the building. The study revealed that heating energy consumption of buildings in the temperate-humid climate zone is higher than cooling energy consumption due to shorter cooling periods and then lighting energy consumption due to less need for artificial lighting in the residential buildings. In other words, various applications of design solutions aiming to reduce the heating energy consumption of buildings for the settlements to be developed in Istanbul are beneficial regarding the increase in energy efficiency level. In this respect, it was found that square plan due to more compact form than rectangular, pavilion due to higher amount of solar radiation gain through three façades than slabs, higher buildings due to better solar access than lower buildings and lower H/W ratios due to wider distance between buildings than higher H/W ratios ensured lower heating energy consumption for buildings. According to the results, in the settlements established based on proper decisions taken during the preliminary design process, a decrease of up to 26% was achieved in the total energy consumption of the building compared to other alternatives. In addition, it has been determined that the energy performance of buildings can be improved up to 19% with the integration of building envelope optimisation and solar control systems. Consequently, this approach has an opportunity to bridge an existing gap by synthesising best practices for decision-makers based on building energy performance obj

___

  • Ahmed, K. S., Khare, M. ve Chaudhry, K. (2005). Wind tunnel simulation studies on dispersion at urban street canyons and intersections-a review. Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 697-717. https://doi. org/10.1016/j.jweia.2005.04.002
  • Allegrini, J., Dorer, V. ve Carmeliet, J. (2016). Impact of radiation exchange between buildings in urban street canyons on space cooling demands of buildings. Energy and Buildings, 1(127), 1074-1084. https://doi.org/10.1016/j.enbuild.2016.06.073
  • Asfour, O. S. ve Alshawaf. E. S. (2015). Effect of housing density on energy efficiency of buildings located in hot climate. Energy and Buildings, 91, 131-138. https://doi.org/10.1016/j.enbu- ild.2015.01.030
  • ASHRAE (2010). Thermal Environmental Conditions for Human Occupancy, (55-2010). American Society of Heating, Refrige- rating and Air-Conditioning Engineers, Inc. http://arco-hvac. ir/wp-content/uploads/2015/11/ASHRAE-55-2010.pdf
  • Berköz, E., Küçükdoğu, M., Yilmaz, Z., Kocaaslan, G., Yıldız, E., Köknel, A., Unver, R., Ak, F., Enarun, D. ve Yıldız, D. (1995). Enerji etkin konut ve yerleşme tasarımı. Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (Proje No: Tübitak-Intag 201).
  • Beyaztaş, H. ve Koçlar Oral, G. (2020). Optimizing urban textu- re and building typology for the goal of achieving near-zero mid-rise residential building. Gazi University Journal of Sci- ence, 33(3), 592-611. https://doi.org/10.35378/gujs.654664
  • Çilingiroğlu, S. (2010). İç Hava Kalitesi. Tesisat Mühendisliği, 115, 23-42. http://www1.mmo.org.tr/resimler/dosya_ ekler/7f2a4ea3bedd425_ek.pdf?dergi=966
  • Gupta, V. (1987). Thermal efficiency of building clusters:an index for nonair-conditioned buildings in hot climates. In D. Hawkes ve P. Steadman (Eds.), Energy and Urban Built Form (s. 133- 145). Butterworth-Heineman.
  • Hachem, C., Athienitis, A. ve Fazio, P. (2011). Investigation of solar potential of housing units in different neighborhood designs. Energy and Buildings, 43(9), 2262-2273. https://doi. org/10.1016/j.enbuild.2011.05.008
  • IESNA (2011). The IESNA Lighting Handbook: Reference & App- lication, 10th Edition. Illuminating Engineering Society of North America.
  • Kanters, J. ve Horvat, M. (2012). Solar energy as a design pa- rameter in urban planning. Energy Procedia, 30, 1143-1152. https://doi.org/10.1016/j.egypro.2012.11.127
  • Mangan, S. D. ve Koçlar Oral, G. (2020). Impacts of future weat- her data on the energy performance of buildings in the con- text of urban geometry. Cogent Engineering, 7(1), 1714112. https://doi.org/10.1080/23311916.2020.1714112
  • Mangan, S. D., Koçlar Oral, G., Sozen, İ. ve Erdemir Kocagil, İ. (2020). Evaluation of settlement textures in terms of building energy, economic performance, and outdoor thermal com- fort. Sustainable Cities and Society, 56, 102110. https://doi. org/10.1016/j.scs.2020.102110
  • Mangan, S. D., Koçlar Oral, G., Erdemir Kocagil, İ. ve Sozen, İ. (2021). The impact of urban form on building energy and cost efficiency in temperate-humid zones. Journal of Bu- ilding Engineering 33, 101626. https://doi.org/10.1016/j. jobe.2020.101626
  • Natanian, J., Aleksandrowicz, O. ve Auer, T. (2019). A paramet- ric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts. Applied Energy 254, 113637. https://doi.org/10.1016/j.ape- nergy.2019.113637
  • Oke, T. R. (1988). Street design and urban canopy layer clima- te. Energy and Buildings, 11(1-3), 103-113. https://doi. org/10.1016/0378-7788(88)90026-6
  • Ratti, C., Baker N. ve Steemers, K. (2005). Energy consumption and urban texture. Energy and Buildings, 37(7), 762-776. https://doi.org/10.1016/j.enbuild.2004.10.010
  • Stromann-Andersen, J. ve Sattrup, P. A. (2011). The urban can- yon and building energy use: Urban density versus daylight and passive solar gains. Energy and Buildings, 43(8), 2011- 2020. https://doi.org/10.1016/j.enbuild.2011.04.007
  • T.C. Resmi Gazetesi (2010). Binalarda Enerji Perfor- mansı Ulusal Hesaplama Yöntemine Dair Tebliğ (No: YİG/2010-02), 27778. https://www.resmigazete.gov.tr/ eskiler/2010/12/20101207M1-1.htm
  • Toudert, F. A. (2009). Energy efficiency of urban buildings: sig- nificance of urban geometry, building construction and cli- mate conditions. Proceeding of The 7th International Con- ference on Urban Climate, Yokohama, Japan. http://www. ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/384605-1- 090524193443-004.pdf
  • TSE (2008). Binalarda ısı yalıtım kuralları (TS 825). Türk Stan- dartları Enstitüsü. https://www.resmigazete.gov.tr/eski- ler/2008/10/20081009-2.htm
  • TUİK (2013). Nüfus ve Konut Araştırması 2011. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Bulten/Index?p=Nufus-ve- Konut-Arastirmasi-2011-15843
  • UN-Habitat (2020). World cities report 2020: The Value of Sus- tainable Urbanization. https://unhabitat.org/sites/default/ files/2020/10/wcr_2020_report.pdf
  • United Nations Department of Economic and Social Affairs, Popu- lation Division (2014). World urbanization prospects: The 2014 revision, highlights (ST/ESA/SER.A/352). https://population. un.org/wup/publications/files/wup2014-highlights.pdf
  • Van Esch, M. M. E, Looman, R. H. J. ve Bruin-Hordijk, G. J. (2012). The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct pas- sive solar heating strategies. Energy and Buildings, 47, 189- 200. https://doi.org/10.1016/j.enbuild.2011.11.042
  • Vartholomaios, A. (2017). A parametric sensitivity analysis of the influence of urban form on domestic energy consumption for heating and cooling in a Mediterranean city. Sustainab- le Cities and Society, 28, 135-145. ttps://doi.org/10.1016/j. scs.2016.09.006
  • Zhang, J., Xu, L., Shabunko, V., Tay, S. E. R., Sun, H., Lau, S. S Y. ve Reindl, T. (2019). Impact of urban block typology on bu- ilding solar potential and energy use efficiency in tropical high-density city. Applied Energy, 240, 513-533. https://doi. org/10.1016/j.apenergy.2019.02.033
Megaron-Cover
  • ISSN: 1305-5798
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2006
  • Yayıncı: Kare Yayıncılık