Bigadiç havzası (Balıkesir-Türkiye) Erken Miyosen göl çökellerinde sin-sedimanter deformasyon yapıları, taban kireçtaşı birimi

Batı Anadolu bölgesinde geç Oligosen – erken Miyosen’de başlayan genişleme ile ilişkilifaylarla sınırlı KD-GB, D-B doğrultulu havzalar gelişmiştir. Bu havzaların dolgularını volkanikve volkanoklastik ara seviyeli akarsu – göl çökelleri oluşturur. Bu çökeller yoğun uyumsuzluklarve yumuşak sediman deformasyon yapıları içermektedir. Söz konusu havzalardan birini oluşturanBigadiç Neojen Havzası’nın dolgusunu taban kireçtaşı birimi, alt tüf birimi, alt boratlı birim, üst tüfbirimi ve üst boratlı birim oluşturur. Kiltaşı, marn, kireçtaşı ve dolomitik kireçtaşı fasiyeslerindenoluşan taban kireçtaşı birimi derin göl ortamında çökelmiştir. Bigadiç güneyinde yüzeyleyentaban kireçtaşı biriminde yumuşak çökel deformasyon yapıları tanımlanmıştır. Bunlar; Kaymaoturma yapıları (slamplar), kaya düşmeleri, kaotik yapılar, klastik dayklar, sinsedimanter faylarve breşik kireçtaşlarıdır. Deformasyon mekanizması esas olarak tabakalarda eğim artışı, sıvılaşmave akışkanlaşma ile ilişkilidir. Çalışma alanının bölgesel tektoniği, sedimantolojik verileri vedeformasyon yapıları birlikte değerlendirildiğinde bu yapıların tektonik ve sismik (tektonik kökenlive depolanma ile eş yaşlı magmatik aktivitelerle ilişkili depremler) etkilerle (allojenik) oluştuğusonucuna varılmıştır.

Syn-sedimentary deformation structures in the Early Miocene lacustrine deposits, the basal limestone unit, Bigadiç basin (Balıkesir, Turkey)

In the Western Anatolian region, NE-SW, E-W directional basins were developed which were limited to the extension-related faults beginning in the late Oligocene to early Miocene. The fi llings of these basins consist of fl uvial – lacustrine deposits containing volcanic and volcaniclastic intercalations. These deposits include intensive local unconformities and soft sediment deformation structures. The fi lling of the Bigadiç Neogene Basin which is one of these basins, constitute base limestone unit, lower tuff unit, lower borate unit, upper tuff unit and upper borate unit. The base limestone unit composed of claystone, marl, limestone, dolomitic limestone facies was deposited in the deep lacustrine environment. The soft sediment deformation structures were defi ned in the base limestone unit, which outcroped in the south of Bigadiç. These are: slumps, rock falls, chaotic structures, clastic dykes, synsedimentary faults and breccia limestone. Deformation mechanisms are related essentially to the increase of slopes of layers, liquidization and fl uidization. In the study area; regional tectonics, sedimentological data, and deformation structures are evaluated together, it is concluded that these structures are formed by tectonic and seismic (earthquakes related to tectonic origin and syndepositional magmatic activities).

___

  • Alfaro, P., Moretti, M., Soria, J.M. 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera), Eclogae Geologicae Helvetiae 90, 531-540.
  • Allen, J.R.L. 1982. Sedimentary structures: their character and physical basis. Developments in Sedimentology. Elsevier, Amsterdam (663 p.).
  • Alsop, G.I., Marco, S. 2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea basin. Journal of Structural Geology 33, 433–457.
  • Alsop, G.I., Marco, S. 2013. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope. Tectonophysics 605, 48–69.
  • Altunkaynak, Ş., Yılmaz, Y. 1998. The Mount Kozak magmatic complex, Western Anatolia. Journal of Volcanology and Geothermal Research 85, 1-4, 211-231.
  • André, J.P., Saint Martin, J.P., Moissette, P., Garcia, F., Corné, J.J., Ferrandini, M. 2004. An unusual Messinian succession in the Sinis Peninsula, western Sardinia, Italy. Sedimentary Geology. 167, 41–55.
  • Audemard, F.A., De Santis, F. 1991. Survey of liquefaction structures induced by recent moderate earthquakes. International Association for Engineering Geology and the Environment 44, 5-16.
  • Basilone, L., Lena, G., Gasparo-Morticelli, M. 2014. Synsedimentary-tectonic, soft-sediment deformation and volcanism inthe rifted Tethyan margin from the Upper Triassic – Middle Jurassicdeep-water carbonates in Central Sicily. Sedimentary Geology, 308, 63-79.
  • Baysal, O., Batman, B., Yılmaz, O., Görmüş, S., Şahbaz, A., Cerit, O., Yalçın, H., Karayiğit A.İ., Salancı,
  • B., Bayhan, H. 1986. Bigadiç Borat havzası ve yakın çevresinin jeolojik incelenmesi. H.Ü. Yerbilimleri Uygulama ve Araştırma Merkezi, Beytepe – Ankara, Proje no: YUVAM/85-1, 90 p. (yayımlanmamış).
  • Baysal, O., Salancı, B., Batman, B., Yılmaz, O., Kasapoğlu, B., Şahbaz, A., Görmüş, S., Kocaefe, S., Gündoğdu, N., Kazanoğlu, H., Şentürk, A., Öner, M., Bayhan, H., Cerit, O., Karayiğit, A.İ., Yalçın, H., Tolluoğlu, Ü., Demirel, İ.H., Genç, Y., Dilaver, T., Temel, A., Çetin, H., Bağcı, G. 1985. Bigadiç Borat Havzası Jeolojisi ve ekonomik maden potansiyelinin tespit edilmesi projesi. H.Ü. Yerbilimleri Uygulama ve Araştırma Merkezi Proje Kodu : YUVAM/84-3; 256 p.
  • Bhattacharya, H.N., Bandyopady, S. 1998. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sedimentary Geology 119, pp. 239—252.
  • Bozkurt, E. 2000. Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications. Geological Society, London, Special Publications 173, 1, 385-403.
  • Bozkurt, E. 2003. Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16, 61-81.
  • Bozkurt, E., Sözbilir, H. 2004. Tectonic evolution of the Gediz Graben: fi eld evidence for an episodic, twostage extension in Western Turkey. Geological Magazine, 141, 1, 63-79.
  • Chen, J., Lee, H.S. 2013. Soft-Sediment deformation structures in Cambrian Siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fl uidization triggered by storm-wave loading. Sedimentary Geology 288, 81-94.
  • Clague, J.J., Naesgaard, E., Sy, A. 1992. Liquefaction features on the Fraser delta: evidence for prehistoric earthquakes? Canadian Journal of Earth Sciences, 29, 8, 1734-1745.
  • Clukey, E.C., Kulhawy, F.H., Liu, P.L.-F., Tate, G.B. 1985. The impact of wave loads and pore-water pressure generation on initiation of sediment transport. Geo-Marine Letters 5, 177–183.
  • Daley, B. 1971. Diapiric and other deformational structures in an Oligocene argillaceous limestone. Sedimentary Geology 6, 29-51.
  • Demicco, R.V., Hardie, L.A. 1994. Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. S.E.P.M. Atlas Series 1, 265 p.
  • Donovan, R.N. 1980. Lacustrine cycles, fi sh ecology and stratigraphic zonation in the Middle Devonian of Cathness. Scottish Journal of Geology 16, 35-50.
  • Erkül, F., Helvacı, C., Sözbilir, H. 2005a. Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Journal of Geology 40, 545-570.
  • Erkül, F., Helvacı, C., Sözbilir, H. 2005b. Stratigraphy and geochronology of the Early Miocene volcanic units in the Bigadiç¸ borate basin, Western Turkey. Turkish Journal of Earth Science 14, 227-253.
  • Erkül, F., Helvacı, C., Sözbilir, H. 2006. Olivine basalt and trachyan desite peperites formed at the subsurface/ surface interface of a semi-arid lake: An example from the Early Miocene Bigadiç¸ basin, western Turkey. Journal of Volcanology and Geothermal Research 149, 240–262.
  • Erkül, F., Tatar Erkül, S. 2010. Erken Miyosen Alaçamdağ (Dursunbey-Balıkesir) Magmatik Kompleksinin Jeolojisi ve Batı Anadolu Genleşme Tektoniğindeki Konumu. Maden Tetkik ve Arama Dergisi 141, 1-27.
  • Field, M.E., Gardner, V., Jennings, A.E., Edwards, B.D. 1982. Earthquake-induced sediment failures on a 0.25° slope, Klamath River delta, California. Geology 10, 542–546.
  • García-Tortosa, F.J., Pedro Alfaro, P., Gibert, L., Scott, G. 2011. Seismically induced slump on an extremely gentle slope (b1°) of the Pleistocene Tecopa paleolake (California). Geology 39, 1055–1058.
  • Garcia-Veigas, J., Helvacı, 2013. Mineralogy and sedimentology of the Miocene Göcenoluk borate deposits, Kırka district, Western Anatolia, Turkey. Sedimentary Geology 290, 85-96.
  • Gibert, L., Sanz de Galdeano, C., Alfaro, P., Scott, G., López Garrido, A.C. 2005. Seismic induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain). Sedimentary Geology 179, 279–294.
  • Guhman, A.I., Pederson, D.T. 1992. Boiling sand springs, Dismal River, Nebraska: agents for formation of vertical cylindrical structures and geomorphic change. Geology 20, 8–10.
  • Gündoğdu, M.N. 1982. Neojen yaşlı Bigadiç sedimanter baseninin jeolojik, mineralojik ve jeokimyasal incelenmesi: Dok. Tezi, 386s, 3 ek, Hacettepe Üniversitesi, Ankara. (yayımlanmamış).
  • Gündoğdu, M.N. 1984. Bigadiç gölsel Neojen baseninin jeolojisi. Hacettepe Üniversitesi Yerbilimleri Dergisi 11, 91-104.
  • Gündoğdu, M.N., Bonnot-Courtois, C., Clauer, N. 1989. Isotopic and chemical signatures of sedimentary smectite and diagenetic clinoptilolite of a lacustrine Neogene basin near Bigadic¸, western Turkey. Appl. Geochem. 4, 635– 644.
  • Günen, E., Varol, B. 2004. Bigadiç Neojen havzasında sedimantasyonla yaşıt tektonik yapılar. Evaporitler Tuzlar Semineri, 19-23 Ocak 2004. 317-328.
  • Harris, N.B.W., Kelley, S., Okay, A.I. 1994. Post collision magmatism and tectonics in Northwest Anatolia. Contributions to Mineralogy and Petrology 117 (3), 241–252.
  • Helvacı, C. 1995. Stratigraphy, mineralogy and genesis of the Bigadiç¸ borate deposits, western Turkey. Econ. Geol. 90, 1237– 1260.
  • Helvacı, C., Alaca, O. 1984. “Geology and Mineralogy of the Bigadiç Borate Deposits,” Book of Abstracts, 38th Scientifi c and Technical Congress of the Geological Society of Turkey, 110-111.
  • Helvacı, C., Alaca, O. 1991. Bigadiç Borat yatakları ve çevresinin jeolojisi ve mineralojisi. Maden Tetkik ve Arama Dergisi 113, 61-92.
  • Hempton, M.R., Dewey, J.S. 1983. Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98, T14–T17.
  • Işık, V., Seyitoğlu, G., Çemen, İ. 2003. Ductile-brittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey. Tectonophysics 374 1-2, 1-18.
  • Jewell, H.E., Ettenshon, R. 2004. An ancient seismite response to Taconian far-fi eld forces: the Cane Run Bed, Upper Ordovician (Trenton) Lexington Limestone, central Kentucky (USA). Journal of Geodynamics 37, 487–511.
  • Johnson, H.D. 1977. Sedimentation and water escape structures in some late Precambrian shallow marine sandstones from Finnmark, North Norway. Sedimentology 24, 389-411.
  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Yoann Denèle, Brun, J.P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A., Oberhänsli, R., Pourteau, A., Augier, R., Gadenne, L., Driussi, O. 2013, Aegean tectonics: Strain localisation, slab tearing and trench retreat, Tectonophysics, 597– 598, 1-33.
  • Jones, A.P., Omoto, K. 2000. Towards establishing criteria for identifying trigger mechanisms for softsediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira basins, northeastern Japan. Sedimentology 47, 1211–1226.
  • Kahle, C.F. 2002. Seismogenic deformation structures in microbialities and mudstones, Silurian Lockport Dolomite, Northwestern Ohio, USA. J. Sedimentary Research 72, 201–216.
  • Karling, R.E., Abella, S.E.B. 1992. Paleoearthquakes in the Pugeot Sound Region recorded in sediments from lake Washington, USA. Science 258, 1617–1619.
  • Keefer, D.F. 1984. Landslides caused by earthquakes, Geol. Soc. Amer. Bull. 95, 406-421.
  • Keefer, D.F. 1999. Earthquake-induced landslides and their effects on alluvial fans. Journal of Sedimentary Research, 69, 84-104.
  • Koç-Taşgın, C. 2011. Seismically-generated hydroplastic deformation structures in the Late Miocene lacustrine deposits of the Malatya Basin, eastern Turkey. Sedimentary Geology, 235, 264-276.
  • Koç-Taşgın, C., Türkmen, I. 2009. Analysis of soft-sediment deformation structures in Neogene fl uviolacustrine deposits of Çaybağı Formation. Eastern Turkey. Sedimentary. Geology. 218, 16–30.
  • Koç-Taşgın, C., Türkmen, İ. 2014. Bigadiç (Balıkesir) Yöresi Neojen Çökellerinin Sedimantolojik Özellikleri. TÜBİTAK 112Y237 Nolu proje. 94s.
  • Koç-Taşgın, C., Orhan, H., Türkmen, İ., Aksoy, E. 2011. Soft-sediment deformation structures in the late Miocene Şelmo Formation around Adıyaman area, Southeastern Turkey. Sedimentary Geology, 235, 3-4, 277-291.
  • Koçyiğit, A., Yusufoğlu, H., Bozkurt, E. 1999. Evidence from the Gediz graben for episodic two-stage extension in western Turkey. Journal of the Geological Society 156, 605-616.
  • Kuenen, P.H. 1958. Experiments in geology. Transactions. Geological Society of Glasgow 23, 1–28.
  • Lowe, D.R. 1975. Water escape structures in coarse grained sediments. Sedimentology, 22, 157-204.
  • Maltman, A. 1994a. The geological deformation of sediments. Chapman & Hall, London (362 pp.).
  • Maltman, A. 1994b. Introduction and overview. In: Maltman, A. (Ed.), The Geological Deformation of Sediments. Chapman & Hall, London, 1–35.
  • Martel, A.T., Gibling, M.R. 1993. Clastic dykes of the Devono-Carboniferous Horton Bluff Formation, Nova Scotia: storm-related structures in shallow lakes. Sedimentary Geology 87, 103–119.
  • Martinsen, O.J. 1994. Mass movements. In: Maltman, A., (Ed.,), The geological Deformation of Sediments. Chapman and Hall, London, pp. 127-165.
  • Mastalerz, K., Wojewoda, J. 1993. Alluvial fan sedimentation along an active strike-slip fault: Plio-Pleistocene Pre-Kaczawa fan, SW Poland. Int. Assoc. Sedimentary Geology 196, 5-30.
  • Mastrogiacomo, G., Moretti, M., Owen G., Spalluto. 2012. Tectonic triggering of slump sheets in the Upper Cretaceous carbonate succession of the Porto Selvaggio area (Salento Peninsula, southern Italy): Synsedimentary tectonics in the APULİAN Carbonate Platform. Sedimentary Geology, 269- 270, 15-27.
  • Mazumder, R., Tom van Loon, A.J., Malviya, V., Arima, M., Ogawa, Y. 2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes (Miura Peninsula, Japan). Sedimentary Geology 344, 323-335.
  • McLaughlin, P.I., Brett, C.E. 2004. Eustatic and tectonic control on the distribution of marine seismites: examples from the Upper Ordovician of Kentucky, USA. Sedimentary Geology 168, 165–192.
  • Mills, P.C. 1983. Genesis and diagnostic value of softsediment deformation structures — a review. Sedimentary Geology 35, 83–104.
  • Molina, J.M., Alfaro, P., Moretti, M., Soria, J.M. 1998. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova 10, 145–150.
  • Montenant, C., Barrier, P., d’Estevou, P.O., Hibsch, C. 2007. Seismites: an attempt at critical analysis and classifi cation. Sedimentary Geology 196, 5-30.
  • Moretti, M. 1996. Le strutture sedimentarie deformative. Studio dellemodalita di deformazone e dell’origine attreverso esempifossili e modellizazione in laboratorio. PhD Universita degli Studi di Bari, Itally. 232 p.
  • Moretti, M., Sabato, L. 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant ‘Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sedimentary Geology 196, 31– 45.
  • Moretti, M., Alfaro, P., Caselles, O., Canas, J.A. 1999. Modeling seismites with a digital shaking table. Tectonophysics 304, 369–383.
  • Moretti, M., Soria, J.M., Alfaro, P., Walsh, N. 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix basin, Southern Spain). Facies 44, pp.283–294.
  • Nichols, G. 2009. Sedimentology and Stratigraphy, WiletBlackwell, 419p.
  • Nichols, R.J., Sparks, R.S.J., Wilson, C.J.N. 1994. Experimental studies of the fl uidization of layered sediments and the formation of fl uid escape structures. Sedimentology 41, 233–253.
  • Obermeier, S.F. 1996. Use of liquefaction-induced features for paleoseismic analysis— an overview of how liquefaction features can be distinguished from other features and how their distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Engineering Geology 44, 1–76.
  • Obermeier, S.F., Martin, J.R., Frankel, A.D., Youd, T.L., Munson, P.J., Munson, C.A., Pond, E.C. 1993. Liquefaction evidence for one or more strong Holocene earthquakes in the Wabash Valley of southern Indiana and Illinois, with a preliminary estimate of magnitude. U.S. Geol. Surv. Prof. Pap. 1536, 27p.
  • Okay, A.I., Satır, M. 2000. Coeval plutonism and magmatism in a latest Oligocene metamorphic core complex in Northwest Turkey. Geological Magazine 137 (5), 495–516.
  • Okay, A.Ü., Satır, M., Sıyako, M., Monie, P., Metzger, R., Akyüz, S. 1996. Paleo- and Neo-Tethyan events in northwestern Turkey: geologic and geochronologic constraints. In: YIN, A. & HARRISON, T.M. (eds), The Tectonic Evolution of Asia, pp.420-441.
  • Okay, A.Ü., Tansel, Ü., Tüysüz, O. 2001. Obduction, subduction and collision as refl ected in the Upper Cretaceous-Lower Eocene sedimentary record of western Turkey. Geological Magazine 138, 117- 142.
  • Onorato, M.R., Perucca, L., Coronato, A., Rabassa, J., López, R. 2016. Seismically-induced softsediment deformation structures associated with the Magallanes-Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina). Sedimentary Geology, 344, 135-144.
  • Owen, G. 1987. Deformation processes in unconsolidated sands. In: Jones, M.E., Preston, R.M.F. (Eds.), Deformation of Sediments and Sedimentary Rocks, Geol. Soc. (London) Spec. Pub No. 29, 11–24.
  • Owen, G. 1995. Soft-sediments deformation in Upper Proterozoic Torridonian Sandstones (Applecross Formation) at Torridon. Northwest Scotland. J. Sedimentary Research A65, 495-504.
  • Owen, G. 1996. Experimental soft-sediment deformation structures formed by the liquefaction of unconsolidated sands and some ancient examples, Sedimentology 43, 279-293.
  • Owen, G., Moretti, M. 2008. Determining the origin of soft-sediment deformation structures: a case study from Upper Carboniferous delta deposits in south-west Wales, UK. Terra Nova 20, 237–245.
  • Owen, G., Moretti, M. 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology 235, 141-147.
  • Owen, G., Moretti, M., Alfaro, P. 2011. Recognizing triggers for soft-sediment deformation: current understanding and future direction. Sedimentary Geology 235, 133-140.
  • Perucca, L.P., Godoy, E., Pantano, A. 2014. Late PleistoceneHolocene earthquake-induced slumps and softsediment deformation structures in the Acequion River valley, Central Precordillera, Argentina, Geologos, 20, 2.
  • Parize, O., Fries, G. 2003. The Vocontian clastic dykes and sills: a geometric model. In: Van Rensebergen, P., Hillis, R.R., Maltman, A.J., Morley, C.K. (Eds.), Subsurface Sediment Mobilization, Geol. Soc. Spec. Publ., vol. 216. Geological Society of London, London, 51–71.
  • Postma, G. 1983. Water escape structures in the context of a mass-fl ow dominated conglomeratic fan-delta (Abrioja Formation, Pliocene, Almeria Basin, SE Spain), Sedimentology 30, 91–103.
  • Pratt, B.R. 1998. Molar-tooth structure in Proterozoic carbonate rocks: origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment. Geological Society America Bulletin 110, 1028– 1045.
  • Pratt, B.R. 2002. Tepees in peritidal carbonates: origin via earthquake induced deformation, with example from the Middle Cambrian of western Canada. Sedimentary Geology 153, 57–64.
  • Rodríguez-Pascua, M.A., Calvo, J.P., De Vicente, G., Gómez-Gras, D. 2000. Soft-sediment Deformation Structures Interpreted as Seismites in Lacustrine Sediments of the Prebetic Zone, SE Spain, and Their Potential use as Indicators of Earthquake Magnitudes During the Late Miocene, Sedimentary Geology 135, 117-135.
  • Rossetti, D.F. 1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: evidence for palaeoseimicity. Sedimentology 46, 1065-1081.
  • Rossetti, D.F., Santos Jr., A.E. 2003. Events of sediment deformation and mass failure in Upper Cretaceous estuarine deposits (Cametá Basin, northern Brazil) as evidence for seismic activity. Sedimentary Geology 161,.107–130.
  • Rossetti, D.F., Goes, A.M. 2000. Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó Formation, northern Brazil. Sedimentary Geology 135, 137- 156.
  • Rossetti, D.F., Goes, A.M., Truckenbrodt, W., Anaisse, J. 2000. Tsunami-induced large-scale scour-andfi ll structures in Late Albian to Cenomanian deposits of the Grajau Basin, Northen Brazil. Sedimentology 47, 309-323.
  • Samaila, N.K., Abubakar, M.B., Dike, E.F.C., Obaje, N.G. 2006. Description of soft-sediment deformation structures in the Cretaceous Bima Sandstone from the Yola Arm, Upper Benue Trough, Northeastern Nigeria. African Earth Sciences 44, 66-74.
  • Savaşçın, M. Y., Güleç, N. 1990. Relationship between magmatic and tectonic activities in western Turkey. M.Y. Savaşçın ve A.H. Eronat (Eds), International Earth Science Colloquum on the Aegean Region (IESCA) Proceedings, pp.300- 313.
  • Scott, B., Price, S. 1988. Earthquake-induced structures in young sediments. Tectonophysics 147, 165–170.
  • Seguret, M., Moussine-Pouchkine, A., Gabaglia, G.R., Bouchette, F. 2001. Storm deposits and stormgenerated coarse carbonate breccias on a pelagic outer shelf (South-East Basin, France). Sedimentology 48, 231-254.
  • Seilacher, A. 1969. Fault-graded beds interpreted as seismites. Sedimentology 13, 155–159.
  • Seyitoğlu, G. 1997. Late Cenozoic tectono-sedimentary development of the Selendi and Usak- Gure basins: a contribution to the discussion on the development of east-west and North trending basins in western Turkey. Geological Magazine, 134, pp.163-175.
  • Seyitoğlu, G., Scott, B. 1994. Late Cenozoic basin development in west Turkey: Gordes basin tectonics and sedimentation. Geological Magazine, 131, pp.631-637.
  • Shepard, P.H. 1955. Delta-front valleys bordering the Mississippi distributaries. Geological Society America Bulletin, 66 1489-1498.
  • Shanmugam, G. 2017. Global case studies of softsediment deformation structures (SSDS): Defi nitions, classifi cations, advances, origins, and problems. Journal of Palaeogeorapghy, 6(4), 251- 320.
  • Siegenthaler, C., Finger, W., Kelts, K., Wang, S. 1987. Earthquake and seiche deposits in Lake Lucerne, Switzerland. Eclogae Geologicae Helvetiae 80, 241–260.
  • Sims, J.D. 1973. Earthquake-induced structures in sediments in Van Norman Lake, San Fernando, California. Science 182, 161–163.
  • Sims, J.D. 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments, Tectonophysics 29, 141- 152.
  • Sözbilir, H. 2007. Menderes Masifi ’nin yüzeylemesini belgeleyen Tersiyer yaşlı sedimenter havzaların oluşum mekanizması, yaşı ve çökel istifl eri. Menderes Masifi Kollokyumu, Ankara.
  • Spalluto, L., Moretti, M., Festa, V., Tropeano, M. 2007. Seismically-induced slumps in LowerMaastrichtian peritidal carbonates of the Apulian Platform (southern Italy). Sedimentary Geology 196, 81-98.
  • Tanner L.H. 2002. Borate formation in a perennial lacustrine setting: Miocene-Pliocene Furnace Creek Formation, Death Valley, California, USA, Sedimentary Geology 148, 1-2, 259-274.
  • Tian, H.S., Zhang, B.H., Zhang, S.H., Lü, M.Y. 2014. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China. Geologos 20,2, pp.125-137.
  • Van Loon, A.J., Brodzikowski, K. 1987. Problems and progress in the research on soft-sediment deformations, Sedimentary Geology 50, 167-193.
  • Vanneste, K., Meghraoui, M., Camelbeek, T. 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system, Tectonophysics 309, 57-79.
  • Weaver, J.D., Jeffcoat, R.E. 1978. Carbonate ball and pillow structures. Geological Magazine 115, .245–253.
  • Westaway, R. 2006. Cenozoic cooling histories in the Menderes Massif western Turkey, may be caused by erosion and fl at subduction, not low-angle normal faulting. Tectonophysics 412, 1-2, 1-25.
  • Yılmaz, O., Gündoğdu, M., Gümüş, S. 1982. Neojen Yaşlı Bigadiç Volkanosedimanter Havzasının Jeolojisi, Etibank Proj. 82p. (yayımlanmamış).
  • Yılmaz, Y., Genç, S.C., Gürer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş., Elmas, A. 2000. When did the western Anatolian grabens begin to develop? E. Bozkurt, J.A. Winchester and J.D.A. Piper (Ed.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications, 353-384.
  • Yılmaz, Y., Genç, S.C., Karacık, Z., Altunkaynak, I. 2001. Two contrasting magmatic associations of NW Anatolia and their tectonic signifi cance. Journal of Geodynamics 31, 243-271.
  • Zhou,Y.Q., Peng, T. M.,Zhou, T.F., Zhang, Z.K., Tian, H., Liang, W.D., Yu, T., Sun, L.F. 2017. Softsediment deformation structures related to volcanic earthquakes of the Lower Cretaceous Qingshan Group in Lingshan Island, Shandong Province, East China. Journal of Palaeogeography (baskıda).
Maden Tetkik ve Arama Dergisi-Cover
  • ISSN: 0026-4563
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1950
  • Yayıncı: Cahit DÖNMEZ
Sayıdaki Diğer Makaleler

Gaziantep kuzeydoğusunun neotektoniği: Bozova ve Halfeti doğrultu atımlı fayları ve bunların kör bindirmeler ile ilişkileri, Türkiye

Gürol SEYİTOĞLU, Nuray ŞAHBAZ

Zemin sıvılaşmasının enerji yaklaşımıyla değerlendirilmesi

Mustafa FENER, Pınar YILMAZ, Kamil KAYABALI, Özgür AKTÜRK, Farhad HABIBZADEH

Elmalı havzası (Antalya) ve yakın çevresinin neotektonik ve morfometrik özellikleri

Şule GÜRBOĞA, Özgür AKTÜRK

Jiurui bölgesindeki (GD Çin) jeokimyasal anomalilerin ayrılmasında Moran-I ve sağlam istatistik yöntemlerinin kullanılması

Tien Thanh NGUYEN

Janja Bölgesinde (GD İran) dere sedimanı verilerine dayalı ters mesafe ağırlıklı (IDW) enterpolasyon yöntemi ve konsantrasyon-alan (C-A) fraktal modelleme kullanılarak jeokimyasal anomalilerin ayrılması

Ali Akbar DAYA, Marzieh HOSSEİNİNASAB

Paleosismolojik bulgular ışığında Orhaneli Fayının Holosen aktivitesi, Bursa, KB Anadolu

Selim ÖZALP, Meryem KARA, Volkan ÖZAKSOY, Tamer Y. DUMAN, Hasan ELMACI

Bigadiç havzası (Balıkesir-Türkiye) Erken Miyosen göl çökellerinde sin-sedimanter deformasyon yapıları, taban kireçtaşı birimi

Calibe KOÇ TAŞGIN, İbrahim TÜRKMEN, Cansu DİNİZ AKARCA

Derbent-Eymir bölgesinde (Yozgat, Türkiye) Artova Ofi yolitik Karmaşığındaki manganez yataklarından mineralojik bulgular

Nursel ÖKSÜZ

Doğanbey Burnu (Seferihisar-İzmir) denizdibi termalsu kaynaklarının foraminifer, ostrakod ve mollusk topluluğuna etkisi

M. Baki YOKEŞ, Atike NAZİK, Bora SONUVAR, Engin MERİÇ, Niyazi AVŞAR, İpek F. BARUT, Mustafa ERYILMAZ, Feyza DİNÇER, Erol KAM, Fulya YÜCESOY ERYILMAZ

Boraks killi zenginleştirme atıklarının karakterizasyonu, tekli- ve ikili fl okülant sistemi ile susuzlandırılması

Nuray KARAPINAR