Zemin sıvılaşmasının enerji yaklaşımıyla değerlendirilmesi

Depremler sırasında yapılarda oluşan hasar (kısmen veya tamamen) birkaç on yıl boyuncakapsamlı araştırmalara konu olan zemin sıvılaşmasından kaynaklanabilir. Kumlu tabakanınsıvılaşmaya duyarlılığı, zeminin sıvılaşma direncinin (kapasite) bir deprem tarafından uygulananyük (talep) ile kıyaslanmasıyla ölçülür. Bu kapsamda gerilme temelli sıvılaşma değerlendirmesi enpopüler yöntemdir. Bu yöntemin başlıca belirsizliği anakayadaki maksimum yatay yer ivmesinin(amax) hesaplanmasıdır. Zemin seviyesinde de bir amax belirlemek için yer tepki analizi veyabasitleştirilmiş bir varsayım gereklidir. Gerilme temelli yaklaşıma dayalı olarak geliştirilen birimdeformasyon temelli yaklaşımda da benzer kısıtlamalar bulunmaktadır. Kumlu zeminin birimhacim başına düşen sıvılaşma enerjisi kapasitesini belirlemek için burulmalı kesme halkası gibilaboratuvar teknikleri bulunmaktadır. Benzer şekilde, deprem kaydının enerjisi basit fi zik ilkelerikullanılarak hesaplanabilir. Herhangi bir deprem kaydının talebi hesaplanırken hız-zaman kaydı vezeminin birim kütlesi kullanılır. Bu araştırmanın amacı zemin sıvılaşmasının değerlendirilmesi içinenerjiye dayalı yöntemin kullanılabilirliğini göstermektir. Ek olarak, gerilme ve birim deformasyontemelli yaklaşımların eksiklikleri genel hatlarıyla verilmiş ve enerji tabanlı yaklaşımın avantajlarıtartışılmıştır.

Assessment of souil liquefaction using the energy approach

Damage to structures during earthquakes may be fully or partly caused by soil liquefaction, which has been the subject of extensive research for several decades. Liquefaction susceptibility of a sandy deposit is performed by comparing the resistance of a soil to liquefaction (i.e., capacity) to the load imparted by an earthquake (i.e., demand). In this regard, the stress-based method of liquefaction assessment is by far the most popular. It involves uncertainties mostly related to the computation of the maximum horizontal ground acceleration (amax) at bedrock. A site response analysis or a simplifi ed assumption is necessary to determine the amax on the ground level as well. Developing from the stress-based approach, the strain-based approach has also similar constraints. There exist laboratory techniques such as torsional shear to determine the capacity of a sandy soil in terms of liquefaction energy per unit volume. Likewise, the energy of a strong motion record can be set by employing simple physics principles. For this, a velocity time history and the unit mass of the soil are employed to compute the demand of any strong motion record. The scope of this investigation is to illustrate the usability of the energy-based method for the evaluation of soil liquefaction. The defi ciencies of the stress- and strain-based approaches are outlined and the advantages of the energy-based approach are discussed.

___

  • Alavi, A.H., Gandomi, A.H. 2012. Energy-based numerical models for assessment of soil liquefaction. Geoscience Frontiers 3(4), 541-555.
  • Atkinson, G. M. 1986. Ground motion for eastern North America. Ontario Hydro, Toronto, Ont., Report, 86353.
  • Baziar, M.H., Jafarian, Y. 2007. Assessment of liquefaction triggering using strain energy concept and ANN model, capacity energy. Soil Dynamics and Earthquake Engineering, 27, 1056–1072.
  • Chen Y. R., Hsieh, S. C., Chen, J. W., Shih, C. C. 2005. Energy-based probabilistic evaluation of soil liquefaction, Soil Dynamics and Earthquake Engineering 25(1):55-68.
  • Davis, R.O., Berrill, J.B. 1982. Energy dissipation and seismic liquefaction in sands. Earthquake Engineering and Structural Dynamics, 10, 59-68.
  • Çetin, K.O., Seed, R.B., Der-Kiureghian, A., Tokimatsu, K., Harder, Jr. L.F., Kayen, R.E., Moss, R.E.S. 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 130(12),1314–1340.
  • Davis, R.O., Berrill, J.B. 2001. Pore pressure and dissipated energy in earthquakes-Field verifi cation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(3), 269-274.
  • DeAlba, P.S., Seed, H.B., Chan, C.K. 1976. Sand liquefaction in large-scale simple shear tests. Journal of Geotechnical Engineering Division ASCE, 102(GT9): 909–927.
  • Dief, H.M., Figueroa, J.L. 2001. Liquefaction assessment by the energy method through centrifuge modeling. In: Zeng, X.W. (Ed.), Proceedings of the NSF International Workshop on Earthquake Simulation in Geotechnical Engineering. CWRU, Cleveland, OH.
  • Dobry, R., Ladd, R., Yokel, F., Chung, R., Powell. D. 1982. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. National Bureau of Standards Building Science Series, US Dept of Commerce, 138 p.
  • Figueroa, J.L., Saada, A.S., Liang, L., Dahisaria, M.N. 1994. Evaluation of soil liquefaction by energy principles. Journal of Geotechnical Engineering, ASCE, 120(9): 1554–1569.
  • Green, R.A. 2001. Energy-based evaluation and remediation of liquefi able soils. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Gutenberg, B. Richter, C.F. 1956. Earthquake magnitude, intensity and acceleration. Bulletin of the Seismological Society of America, 46, 104-105.
  • Hardin, B.O., Drenevich, V.P. 1972. Shear modulus and damping in soils – design and curves. ASCE Journal of the Soil Mechanics and Foundations Division, 94 (SM3), 689-708.
  • Hatanaka M., Uchida A. 1996. Empirical Correlation between Penetration Resistance and Internal Friction Angle of Sandy Soils. Soils and Foundations, 36(4): 1-9.
  • Idriss, I.M., Boulanger, R.W. 2006. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26, 115-130.
  • Idriss, I.M., Boulanger, R.W. 2010. SPT-based liquefaction triggering procedures. Report No. UCD/CGM10-02, Center for Geotechnical Modeling Department, University of California Davis, California, USA, 136 pp.
  • Ishihara, K., Yasuda, S. 1972. Sand liquefaction due to irregular excitation. Soils and Foundations, 12(4), 65-77.
  • Ishihara, K., Yasuda, S. 1975. Soil liquefaction in hollow cylinder torsion under irregular excitation. Soils and Foundations, 15(1), 45-59.
  • Jafarian, Y., Towhata, I., Baziar, M.H., Noorzad, A., Bahmanpour, A. 2012. Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments. Soil Dynamics and Earthquake Engineering, 35, 13-28.
  • Kokusho T., Mimori, Y. 2015. Liquefaction potential evaluations by energy-based method and stress-based method for various ground motions, Soil Dynamics and Earthquake Engineering, 75, 130-146.
  • Kokusho T., Mimori, Y., Kaneko, Y., 2015. Energy-based liquefaction potential evaluation and its application to a case history, 8th Int. Conf. on Earthquake Geotechnical Engineering, New Zealand.
  • Kokusho, T., Mimori, Y. Kaneko, Y. 2015. Energy-Based Liquefaction Potential Evaluation and its Application to a Case History. 6th Int’l. Conf. Earthquake Geotechnical Engineering, 1-4 November 2015, Christchuech, New Zealand.
  • Ladd, R.S., Dobry, R., Yokel, F.Y., Chung, R.M. 1989. Pore water pressure buildup in clean sands because of cyclic straining. ASTM Geotechnical Testing Journal, 12(1), 2208-2228.
  • Law, K.T., Cao, Y.L., He, G.N. 1990. An energy approach for assessing seismic liquefaction potential. Canadian Geotechnical Journal, 27, 320–329.
  • Liang, L. 1995. Development of an energy method for evaluating the liquefaction potential of a soil deposit. PhD dissertation, Department of Civil Engineering, Case Western Reserve University, Cleveland, OH.
  • Liang, L., Figueroa, J.L., Saada, A.S. 1995. Liquefaction under random loading: a unit energy approach. Journal of Geotechnical Engineering, ASCE 121(11). 776-781.
  • NCEER, 1997. Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. T. L. Youd and I. M. Idriss, eds., Technical Report
  • NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York, Buffalo, 276 pp.
  • Nemat-Nasser S., Shokooh, A.A. 1979. Unifi ed approach to densifi cation and liquefaction of cohesionless sand in cyclic shearing. Can Geotech J 1979; 16(4), 659-678.
  • Ostadan, F., Deng, N., Arango, I. 1996. Energy-based method for liquefaction potential evaluation - Phase I, feasibility study. U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory.
  • Seed, H.B. 1980. Closure to soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J. Geotech. Eng. ASCE 106 (GT6), 724.
  • Seed, H.B., Idriss, I.M. 1971. Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div., ASCE, 97 (SM8): 1249–1274.
  • Seed, H.B., Idriss, I.M. 1982. Ground motions and soil liquefaction during earthquakes. Monograph Series, Earthquake Engineering Research Institute, Oakland, CA, 134 p.
  • Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, K. 1986. Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering, 112(GT11), 1016-1032.
  • Skempton, A.W. 1986. Standard penetration test procedures and the effects in sand of overburden pressure, relative density, particle size, aging, and overconsolidation. Geotechnique, 21, 305-321.
  • Whitman, R.V. 1971. Resistance of soil to liquefaction and settlement. Soils and Foundations, 11(4), 59-68.
  • Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H. 2001. Liquefaction resistance of soils - Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering 127(4), 817-833.
  • Zhang, W., Goh, A.T.C., Zhang, Y., Chen, Y., Xiao, Y. 2015. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines: Engineering Geology, 188, 29- 37.
Maden Tetkik ve Arama Dergisi-Cover
  • ISSN: 0026-4563
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1950
  • Yayıncı: Cahit DÖNMEZ
Sayıdaki Diğer Makaleler

Orta Anadolu’daki Kılçak formasyonunun (Erken Miyosen) palinolojisi: Paleoiklimsel ve paleo-ortamsal çıkarımlar

Nurdan YAVUZ, Şükrü Sinan DEMİRER

Derbent-Eymir bölgesinde (Yozgat, Türkiye) Artova Ofi yolitik Karmaşığındaki manganez yataklarından mineralojik bulgular

Nursel ÖKSÜZ

Paleosismolojik bulgular ışığında Orhaneli Fayının Holosen aktivitesi, Bursa, KB Anadolu

Selim ÖZALP, Meryem KARA, Volkan ÖZAKSOY, Tamer Y. DUMAN, Hasan ELMACI

Elmalı havzası (Antalya) ve yakın çevresinin neotektonik ve morfometrik özellikleri

Şule GÜRBOĞA, Özgür AKTÜRK

Zemin sıvılaşmasının enerji yaklaşımıyla değerlendirilmesi

Mustafa FENER, Pınar YILMAZ, Kamil KAYABALI, Özgür AKTÜRK, Farhad HABIBZADEH

Jiurui bölgesindeki (GD Çin) jeokimyasal anomalilerin ayrılmasında Moran-I ve sağlam istatistik yöntemlerinin kullanılması

Tien Thanh NGUYEN

Sinanpaşa (Afyon) Miyosen kömürlerininin petrografi k ve palinolojik incelemeleri

Elif AKISKA

Janja Bölgesinde (GD İran) dere sedimanı verilerine dayalı ters mesafe ağırlıklı (IDW) enterpolasyon yöntemi ve konsantrasyon-alan (C-A) fraktal modelleme kullanılarak jeokimyasal anomalilerin ayrılması

Ali Akbar DAYA, Marzieh HOSSEİNİNASAB

Doğanbey Burnu (Seferihisar-İzmir) denizdibi termalsu kaynaklarının foraminifer, ostrakod ve mollusk topluluğuna etkisi

M. Baki YOKEŞ, Atike NAZİK, Bora SONUVAR, Engin MERİÇ, Niyazi AVŞAR, İpek F. BARUT, Mustafa ERYILMAZ, Feyza DİNÇER, Erol KAM, Fulya YÜCESOY ERYILMAZ

Gaziantep kuzeydoğusunun neotektoniği: Bozova ve Halfeti doğrultu atımlı fayları ve bunların kör bindirmeler ile ilişkileri, Türkiye

Gürol SEYİTOĞLU, Nuray ŞAHBAZ