Gecikme Zamanlı Kapalı - Döngü Tedarik Zinciri Ağ Tasarımı için Çok - Amaçlı Karma - Tamsayılı Programlama Modeli

Son yıllarda, artan çevresel kaygılar nedeniyle işletmeler ürünlerin yeniden üretilmesi süresince farklı yollar aramaya başlamış ve bu süreçte kapalı döngü tedarik zinciri (KDTZ) optimizasyonu işletmeler için önemli bir anahtar haline gelmiştir. Ancak KDTZ optimizasyonunda maliyetin tek başına yeterli olmadığı karar vericilerin karbon emisyonu, uygun araç seçimi, zamanında teslimat ve üretimde esneklik gibi farklı özellikleri de bu optimizasyonun içinde beklediği görülmüştür. Bu nedenle, bu çalışmada, en uygun kapalı döngü tedarik zinciri ağının belirlenmesi amacıyla tedarikçiler, fabrikalar, dağıtım merkezleri ve müşterilerden oluşan, müşterileri memnun edecek seviyede teslimat zamanını dikkate alan bir model geliştirilmiştir. Önerilen modelin amacı, stratejik ağ tasarımı kararlarını taktiksel malzeme akışı ile birleştirerek toplam maliyetlerin ve farklı taşıt kullanımından kaynaklanan gecikme süresinin minimum yapılması olmak üzere beş farklı parçadan oluşmaktadır. Toplam gecikme süresinin hesaplanabilmesi için üç farklı taşıtın olduğu ve taşıtların  salınımlarının farklı olduğu varsayılmıştır. Önerilen modelde,  toplam taşıma maliyetinin ve  salınımlarından oluşan çevresel maliyet haricinde üzerinde durulan konular taşınacak miktar ve taşıma sıklığıdır. Müşterilerin beklentilerinin farklı olması teslimatın zamanında karşılanamamasına ve teslimatta gecikmelere yol açmaktadır. Bu nedenlerle bu çalışmada toplam gecikme süresinin minimize edilmesi ve hangi araçlarla taşıma yapılacağı hesaplanmıştır. Önerilen optimizasyon modelini çözmek için karma-tamsayılı doğrusal programlama modeli oluşturulmuş geliştirilen modelin önemini ve uygulanabilirliğini göstermek için senaryo analizleri yapılmış ve sonuçlar irdelenmiştir.

___

  • Amin, Saman Hassanzadeh, Zhang, Guoqing Akhtar, Pervaiz. (2017). “Effects of uncertainty on a tire closed-loop supply chain network”, Expert Systems with Applications 73, pp. 82–91
  • Aydin, R., Kwong, C. K., Ji, P. (2016). "Coordination of the closed-loop supply chain for product line design with consideration of remanufactured products", Journal of Cleaner Production, 114, pp. 286-298.
  • Chen, Yi-Wen, Wang, Li-Chih, Wang Allen, Chen, Tzu-Li, (2017). “A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry”, Robotics and Computer-Integrated Manufacturing, 43111–123
  • Çalık, A., Paksoy, T., Yıldızbaşı A., Pehlivan, N. Y. (2017). “A decentralized model for allied closed-loop supply chains: comparative analysis of interactive fuzzy programming approaches”, International Journal of Fuzzy Systems, 19, 2, pp. 367–382.
  • Çalık, A., Pehlivan, N. Y., Paksoy, T., Weber, G. W. (2018). “A novel interactive fuzzy programming approach for optimization of allied closed-loop supply chain”, International Journal of Computational Intelligence Systems, 11, 1, pp. 672-691.
  • Demirel, Neslihan Özgün, Gökçen, Hadi. (2008). "A mixed integer programming model for remanufacturing in reverse logistics environment", The International Journal of Advanced Manufacturing Technology, 39 (11), pp. 1197-1206.
  • Dutta, Pankaj, Das, Debabrata, Schultmann, Frank, Fröhling, Magnus, (2016). “Design and planning of a closed-loop supply chain with three way recovery and buy-back offer”, Journal of Cleaner Production 135, pp.604-619.
  • Fahimnia, Behnam, Sarkis, Joseph, Dehghanian, Farzad, Banihashemi, Nahid, Rahman, Shams. (2013). "The impact of carbon pricing on a closed-loop supply chain: An Australian case study", Journal of Cleaner Production, 59, pp. 210-225.
  • Fleischmann, Moritz, Beullens, Patrick, Bloemhof-Ruwaard, Jacqueline M., Wassenhove, Luk N. (2001). “The impact of product recovery on logistics network design”, Production and Operations Management. 10 (2), pp. 156-173.
  • Fleischmann, Moritz, Bloemhof-Ruwaard, Jacqueline M., Dekker, Rommert, van der Laan, Erwin, van Nunen, Jo A. E. E., Van Wassenhove, Luk N. (1997). "Quantitative models for reverse logistics: A review", European Journal of Operational Research, 103 (1), pp. 1-17.
  • Guiltinan, Joseph P., Nwokoye, Nonyelu G. (1975). "Developing distribution channels and systems in the emerging recycling industries", International Journal of Physical Distribution, 6 (1), pp. 28-38.
  • Hu, T.-L., Sheu, J.-B., Huang, K.-H. (2002). "A reverse logistics cost minimization model for the treatment of hazardous wastes", Transportation Research Part E: Logistics and Transportation Review, 38 (6), pp. 457-473
  • Igarashi, Kento, Yamada, Tetsuo, Gupta, Surendra M., Inoue, Masato, Itsubo, Norihiro. (2016). "Disassembly system modeling and design with parts selection for cost, recycling and CO2 saving rate using multicriteria optimization ", Journal of Manufacturing Systems, 38, pp. 151-164.
  • Kannan, G.,Sasikumar, P., Devika, K. (2010). "A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling", Applied Mathematical Modelling, 34 (3), pp. 655-670.
  • Krikke, H., Bloemhof-Ruwaard, Jacqueline M., Van Wassenhove, Luk N., (2003). “Concurrent product and closed-loop supply chain design with an application to refrigerators”, International Journal of Production Research. 41 (16), pp. 3689-3719.
  • Özceylan, Eren, Demirel, Neslihan, Çetinkaya, Cihan, Demirel, Eray. (2017). “A closed-loop supply chain network design for automotive industry in Turkey”, Computers & Industrial Engineering, 113, pp. 727-745.
  • Özceylan, Eren, Paksoy, Turan. (2014). "Interactive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertainty", International Journal of Production Research, 52 (8), pp. 2363-2387.
  • Pati, Rupesh Kumar,Vrat, Prem, Kumar, Pradeep. (2008). "A goal programming model for paper recycling system", Omega, 36 (3), pp. 405-417.
  • Rezapour, Shabnam, Farahani, Reza Zanjirani, Fahimnia, Behnam, Govindan, Kannan, Mansouri, Yalda. (2015). "Competitive closed-loop supply chain network design with price-dependent demands", Journal of Cleaner Production, 93, pp. 251-272.
  • Savaşkan, R. Canan, Bhattacharya, Shantanu, Van Wassenhove Luk, N. (2004). "Closed-Loop supply chain models with product remanufacturing", Management Science, 50 (2), pp. 239-252.
  • Shih, L.-H. (2001). "Reverse logistics system planning for recycling electrical appliances and computers in Taiwan", Resources, Conservation and Recycling, 32 (1), pp. 55-72.
  • Subulan, Kemal, Baykasoğlu, Adil, Özsoydan, Fehmi B., Taşan, A. Serdar, Selim, Hasan. (2015). "A case-oriented approach to a lead/acid battery closed-loop supply chain network design under risk and uncertainty", Journal of Manufacturing Systems, 37, pp. 340-361.
  • Tahirov, Nail, Hasanov, Parviz, Jaber, Mohamad Y. (2016). "Optimization of closed-loop supply chain of multi-items with returned subassemblies", International Journal of Production Economics, 174, pp. 1-10.
  • Wang, Jiahai, Zhou, Ying, Wang, Yong, Zhang, Jun, Chen, C. L. Philip, Zheng, Zibin. (2016). "Multi objective Vehicle Routing Problems with Simultaneous Delivery and Pick up and Time Windows: Formulation, Instances, and Algorithms", IEEE Transactıons on Cybernetıcs, 46 (3), pp. 582-594.
  • Zeballos, L. J., Gomes, M. I., Barbosa-Povoa, A. P., Novais, A. Q. (2012). "Addressing the uncertain quality and quantity of returns in closed-loop supply chains", Computers & Chemical Engineering, 47, pp. 237-247.