Immunohistochemical Distributions of HGF and PCNA in the Kidneys of Diabetic and Non-Diabetic Mice

Diabetes mellitus is a systemic disease that causes functional disorders in various organs and systems. In this study, we investigated the immunohistochemical localization of hepatocyte growth factor (HGF) and proliferating cell nuclear antigen (PCNA) in the kidneys of streptozocin (STZ)-induced diabetic mice. Twenty-four Swiss albino mice were divided into three groups: control, sham and diabetic groups. STZ (100 mg/ kg) was administered intraperitoneally (ip) for the development of diabetes. The avidin-biotin-peroxidase complex (ABC) technique was used to determine HGF and PCNA immunoreactivity. In diabetic kidney tissue, there was hydropic degeneration and irregularities on the epithelium of some proximal and distal tubules. Narrowing was observed in some of the Bowman’s spaces. HGF and PCNA immunoreactivities were especially intense in the inner cortex and weak in the medulla. More intense HGF and PCNA immunoreactivities were found in the individual epithelial cells of the proximal and distal tubules. Immunoreactivities were stronger in the proximal tubules than in the distal tubules. In addition, HGF and PCNA immunoreactivities were strong in both interstitial regions and papillary ducts. HGF immunoreactivity was weaker in the diabetic group compared to the other groups. PCNA immunoreactivity generally decreased in the diabetic group but increased in the glomeruli of this group. The reason for the latter result was thought to be based on the increase of mesangial cells in the glomeruli.

___

1. American Diabetes Association (ADA): Diagnosis and classification of diabetes mellitus. Diabetes Care, 35, S64-S71, 2012

2. Kharroubi AT, Darwish HM: Diabetes mellitus: The epidemic of the century. World J Diabetes, 6 (6): 850-867, 2015. DOI: 10.4239/wjd.v6.i6.850

3. Al-awar A, Kupai K, Veszelka M, Szucs G, Attieh Z, Murlasits Z, Török S, Pósa A, Varga C: Experimental diabetes mellitus in different animal models. J Diabetes Res 2016:9051426, 2016. DOI: 10.1155/ 2016/9051426

4. Sanai T, Sobka T, Johnson T, El-Essawy M, Muchaneta-Kubara EC, Ben Gharbia O, Oldroyd S, El Nahus AM: Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy. Diabetologia, 43, 91-100, 2000. DOI: 10.1007/s001250050012

5. Fajardo-Puerta AB, Prado MM, Frampton AE, Jiao LR: Gene of the month: HGF. J Clin Pathol, 69, 575-579, 2016. DOI: 10.1136/ jclinpath-2015-203575

6. Liu Y, Centracchio JN, Lin L, Sun AM, Dworkin LD: Constitutive expression of HGF modulates renal epithelial cell phenotype and induces c-met and fibronectin expression. Exp Cell Res, 242, 174-185, 1998. DOI: 10.1006/excr.1998.4107

7. Liu Y: Hepatocyte growth factor and the kidney. Curr Opin Nephrol Hypertens, 11, 23-30, 2002.

8. Barrow-McGee R, Kermorgant S: Met endosomal signalling: In the right place, at the right time. Int J Biochem Cell Biol, 49, 69-74, 2014. DOI: 10.1016/j.biocel.2014.01.009

9. Hack SP, Bruey JM, Koeppen H: HGF/MET-directed therapeutics in gastroesophageal cancer: A review of clinical and biomarker development. Oncotarget, 5, 2866-2880, 2014. DOI: 10.18632/oncotarget.2003

10. Matsumoto K, Funakoshi H, Takahashi H, Sakai K: HGF-Met pathway in regeneration and drug discovery Biomedines, 2 (4): 275–300, 2014. DOI: 10.3390/biomedicines2040275

11. Reviriego-Mendoza MM, Santy LC: The cytohesin guanosine exchange factors (GEFs) are required to promote HGF-mediated renal recovery after acute kidney injury (AKI) in mice. Physiol Rep, 3 (6): e12442, 2015. DOI: 10.14814/phy2.12442

12. Dai C, Yang J, Liu Y: Single ınjection of naked plasmid encoding hepatocyte growth factor prevents cell death and ameliorates acute renal failure in mice. J Am Soc Nephrol, 13 (2): 411-422, 2002.

13. Gervai JZ, Galicza J, Szeltner Z, Zamborszky J, Szüts D: A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance. DNA Repair, 54, 46-54, 2017. DOI: 10.1016/j.dnarep.2017.04.003

14. Boehm EM, Spies M, Washington MT: PCNA tool belts and polymerase bridges form during translesion synthesis. Nucleic Acids Res, 44 (17): 8250-8260, 2016. DOI: 10.1093/nar/gkw563

15. Kanao R, Masutani C: Regulation of DNA damage tolerance in mammalian cells by posttranslational modifications of PCNA. Mutat Res, 803–805, 82-88, 2017. DOI: 10.1016/j.mrfmmm.2017.06.004

16. Masuda Y, Kanao R, Kaji K, Ohmori H, Hanaoka F, Masutani C: Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Res, 43 (16): 7898-7910, 2015. DOI: 10.1093/nar/gkv712

17. Moldovan GL, Pfander B, Jentsch S: PCNA, the maestro of the replication Fork. Cell, 129 (4): 665-679, 2007. DOI: 10.1016/j.cell.2007. 05.003

18. Lu Y, Wen J, Chen DP, Wu LL, Li QG, Xie Y, Wu D, Liu X, Chen XM: Modulation of cyclins and p53 in mesangial cell proliferation and apoptosis during Habu nephritis. Clin Exp Nephrol, 20, 178-186, 2016. DOI: 10.1007/s10157-015-1163-6

19. Maga G, Hubscher U: Proliferating cell nuclear antigen (PCNA): A dancer with many partners. J Cell Sci, 116, 3051-3060, 2003. DOI: 10.1242/ jcs.00653

20. Gross ML, El-Shakmak A, Szabo A, Koch A, Kuhlmann A, Münter K, Ritz E, Amann K: ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. Diabetologia, 46, 856-868, 2003. DOI: 10.1007/s00125-003-1106-8

21. Leung W, Ho FM, Li WP, Liang YC: Vitis thunbergii var. taiwaniana leaf extract reduces blood glucose levels in mice with streptozotocininduced diabetes. Int J Pharmacol, 13 (5): 457-464, 2017. DOI: 10.3923/ ijp.2017.457.464

22. Lee JW, Wang JH, Sen TS: Antidiabetic effect of kappaphycusalvarezii extracts on streptozotocin-induced type II diabetic ICR mice. Ann Pharmacol Pharm, 2 (5):1056, 2017.

23. Al-Malki AL, El Rabey HA: The Antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed Res Int, 2015:381040, 2015. DOI: 10.1155/2015/381040

24. Koral Taşçı S, Deprem T, Bingöl SA, Akbulut Y: The anatomical and histological structures of buzzard’s (Buteo buteo) small intestine and liver, and immunohistochemical localization of catalase. Kafkas Univ Vet Fak Derg, 24 (1): 69-74, 2018. DOI: 10.9775/kvfd.2017.18333

25. Quinn L: Mechanisms in the development of type 2 diabetes mellitus. J Cardiovasc Nurs, 16 (2): 1-16, 2002.

26. Ziyadeh FN, Hoffman BB, Han DC, Iglesias-de la Cruz MC, Hong SW, Isono M, Chen S, McGovan TA, Sharma K: Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc Natl Acad Sci USA, 97, 8015-8020, 2000. DOI: 10.1073/pnas.120055097

27. Pourghasem M, Shafi H, Babazadeh Z: Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med, 6 (3):120-127, 2015.

28. Tashiro K, Hagiya M, Nishizawa T, Seki T, Shimonishi M, Shimizu S, Nakamura T: Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc Natl Acad Sci USA, 87 (8): 3200-3204, 1990. DOI: 10.1073/pnas.87.8.3200

29. Klahr S, Morrıssey J: Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor. Management of comorbidities in kidney disease in the 21st century: Anemia and bone disease. Kidney Int, 64, S105-S112, 2003. DOI: 10.1046/ j.1523-1755.64.s87.16.x

30. Yang J, Liu Y: Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol, 284 (2): F349-F357, 2003. DOI: 10.1152/ajprenal.00154.2002

31. Nishimura M, Ushiyama M, Ohtsuka K, Nıshıda M, Inoue N, Matsumuro A, Mineo T, Yoshimura M: Serum hepatocyte growth factor as a possible indicator of vascular lesions. J Clin Endocrinol Metab, 84 (7): 2475-2480, 1999. DOI: 10.1210/jcem.84.7.5814

32. Nakamura S, Morishita R, Moriguchi A, Yo Y, Nakamura Y, Hayashi SI, Matsumoto K, Matsumoto K, Nakamura T, Higaki J, Ogihara T: Hepatocyte growth factor as a potential index of complication in diabetes mellitus. J Hypertens, 16:2019-2026, 1998.

33. Wolf HK, Zargener R, Michalopoulos GK: Localization of hepatocyte growth factor in human and rat tissues: An immunohistochemical study. Hepatology, 14 (3): 488-494, 1991. DOI: 10.1002/hep.1840140314

34. Dai C, Yang J, Bastacky S, Xia J, Li Y, Liu Y: Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropaty in mice. J Am Soc Nephrol, 15 (10): 2637-2647, 2004. DOI: 10.1097/01. ASN.0000139479.09658.EE

35. Wang LS, Wang H, Zhang QL, Yang, ZJ, Kong FX, Wu CT: Hepatocyte growth factor gene therapy for ischemic diseases. Hum Gene Ther, 29 (4): 413-423, 2018. DOI: 10.1089/hum.2017.217

36. Morishita R, Aoki M, Yo Y, Ogihara T: Hepatocyte growth factor as a cardiovascular hormone: Role of HGF in the pathogenesis of cardiovascular disease. Endocr J, 49 (3): 273-284, 2002. DOI: 10.1507/endocrj.49.273

37. Funakoshi H, Nakamura T: Hepatocyte growth factor: From diagnosis to clinical applications. Clin Chim Acta, 327 (1-2): 1-23, 2003. DOI: 10.1016/ s0009-8981(02)00302-9

38. Foley JF, Dietrich DR, Swenberg JA, Maronpot RR: Detection and evaluation of proliferating cell nuclear antigen (PCNA) in rat tissue by an ımproved ımmunohistochemical procedure. J Histotechnol, 14 (4): 237- 241, 1991. DOI: 10.1179/his.1991.14.4.237

39. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW: Podocyte loss and progressive glomerular ınjury in type II diabetes. J Clin Invest, 99 (2): 342- 348, 1997. DOI: 10.1172/JCI119163

40. Abrass CK: Diabetic nefropathy. Mechanisms of mesangial matrix expansion. West J Med, 162 (4): 318-321, 1995.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

A Molecular Investigation of Carbapenem Resistant Enterobacteriaceae and blaKPC, blaNDM and blaOXA-48 Genes in Raw Milk

Serhat AL, Nurhan ERTAŞ ONMAZ, Mukaddes BAREL, Yeliz YILDIRIM, ZAFER GÖNÜLALAN

Yoğurt Otu (Galium aparine) ve Civan Perçemi (Achillea millefolium) Ekstraktlarının In-vitro Yarı-Sürekli Kültür Sisteminde (RUSITEC) Rumen Mikrobiyal Fermentasyonu Üzerine Etkileri

Mert PEKCAN, Ahu DEMİRTAŞ, İlksin PİŞKİN, Saad Ahmed Adam MUSA, Yasemin SALGIRLI DEMİRBAŞ, Bahri EMRE, Hakan ÖZTÜRK, Neşe TOPRAK

Immunohistochemical Distributions of HGF and PCNA in the Kidneys of Diabetic and Non-Diabetic Mice

Turgay DEPREM, Serap İLHAN AKSU, Serap KORAL TAŞÇI, Şahin ASLAN, Seyit Ali BİNGÖL, Nurhayat GÜLMEZ

Evaluation of Serum Amyloid A and Procalcitonin in Some Inflammatory Diseases of Cattle

Onur BAŞBUĞ, İbrahim YURDAKUL, MURAT YÜKSEL

Effect of Different Preservation and Salting Methods on Some Volatile Compounds and Sensory Properties of Kashar Cheese

Asya ÇETİNKAYA

Higenamine Decreased Oxidative Kidney Damage Induced By Ischemia Reperfusion in Rats

Mustafa CAN GÜLER, Ayhan TANYELİ, ERSEN ERASLAN, Fazile Nur EKİNCİ AKDEMİR, ÖMER TOPDAĞI, Tuncer NACAR

İki Köpekte Popliteal Arter Kanamasının Kontrolü İçin “Celox” Gazlı Bez Uygulaması

Joanna GŁODEK, Zbigniew ADAMIAK, Paweł JASTRZĘBSKI, Angelika TOBOLSKA

Postnatal Gelişim Döneminde Rat Testis ve Epididimisinde Toll-benzeri Reseptörler 2, 7 ve 8’in Ekspresyon Profilleri

Mehmet ÖZBEK, Mustafa ÖZTOP, Emel ERGÜN, Levent ERGÜN, Füsun ERHAN, Banu KANDİL, Feyzullah BEYAZ

CRISPR/Cas9 Sistemi Kullanılarak Ectodysplasin A (eda) İfade Etmeyen Zebra Balığı Üretimi

Wen WANG, Cunfang ZHANG, Linyong HU, Sijia LIU

Farelerde Düşük Virulans Gösteren ve Listeriosise Karşı Koruma Sağlayan Listeria monocytogenes Mutantı

Jingjing REN, Mingwei YANG, Pengyan WANG, Jianjun JIANG, Genqiang YAN