Evaluation of Genotoxic Effects of C60 Fullerene-γ-Fe2O3 and MultiWall Carbon Nanotubes-γ-Fe2O3 Nanoparticles

The use of magnetic nanoparticles in nanomedicine applications has increased significantly in recent years. Genotoxic evaluation of the nanomaterials used for this purpose is therefore very important. In our study, the genotoxic effect of C60 fullerene-γ-Fe2O3 and multi-wall carbon nanotubes-γ-Fe2O3 magnetic nanoparticles over a wide concentration range (0.1, 1.0, 5.0, 10.0, 25.0, 50.0, and 100.0 µg/plate) was investigated using the Bacterial Reverse Mutation Test. These magnetic nanoparticles did not cause genetic damage to Salmonella typhimurium TA100 and TA98 in the presence and absence of metabolic activation. Due to the rapid increase in the presence of nanoparticles in our daily lives, mutagenicity and toxicity data related to nanoparticles are quite valuable. For this reason, in vivo and in vitro studies that allow for effective evaluation of these compounds is of the utmost importance.

C60 Fullerene-γ-Fe2O3 ve Çok Duvarlı Karbon Nanotüpler-γ-Fe2O3 Nanopartiküllerinin Genotoksik Etkilerinin Değerlendirilmesi

Nanotıp uygulamalarında manyetik nano parçacıkların kullanılması son yıllarda önemli ölçüde artmıştır. Bu amaçla kullanılan nano malzemelerin genotoksik değerlendirilmesi bu nedenle çok önemlidir. Çalışmamızda, C60 fullerene-γ-Fe2O3 ve çok duvarlı karbon nanotüpler γ-Fe2O3 manyetik nanopartiküllerin geniş bir konsantrasyon aralığında (0.1, 1.0, 5.0, 10.0, 25.0, 50.0 ve 100.0 µg/plaka) genotoksik etkisi Bakteriyel Geri Mutasyon Testi kullanılarak araştırıldı. Bu manyetik nanopartiküller, metabolik aktivasyonun varlığında ve yokluğunda Salmonella typhimurium TA100 ve TA98’de genetik hasara neden olmamıştır. Günlük yaşamlarımızda nanopartiküllerin varlığındaki hızlı artış nedeniyle, nanopartiküller ile ilgili mutajenite ve toksisite verileri oldukça değerlidir. Bu nedenle, bu bileşiklerin etkili bir şekilde değerlendirilmesine olanak sağlayan in vivo ve in vitro çalışmalar oldukça önemlidir.

___

Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM: Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett, 171 (3): 99-110, 2007. DOI: 10.1016/j.toxlet.2007.04.008

Shinohara N, Matsumoto K, Endoh S, Maru J, Nakanishi J: In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol Lett, 191 (2-3): 289-296, 2009. DOI: 10.1016/j.toxlet.2009.09.012

Shimizu K, Kubota R, Kobayashi N, Tahara M, Sugimoto N, Nishimura T, Ikarashi Y: Cytotoxic effects of hydroxylated fullerenes in three types of liver cells. Materials, 6 (7): 2713-2722, 2013. DOI: 10.3390/ ma6072713

Prylutska SV, Matyshevska OP, Golub AA, Prylutskyy YI, Potebnya GP, Ritter U, Scharff P: Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater Sci Eng C Mater Biol Appl, 27, 1121- 1124, 2007. DOI: 10.1016/j.msec.2006.07.009

Tsuchiya T, Yamakoshi YN, Miyata N: A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem Biophys Res Commun, 206 (3): 885-894, 1995. DOI: 10.1006/bbrc.1995.1126

Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T: Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology, 225 (1): 48-54, 2006. DOI: 10.1016/j.tox.2006.05.001

Partha R, Conyers JL: Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine, 4, 261-275, 2009. DOI: 10.2147/IJN.S5964

Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK: Medicinal applications of fullerenes. Int J Nanomedicine, 2 (4): 639-649, 2007.

Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X: Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol, 39 (5): 1378-1383, 2005. DOI: 10.1021/es048729l

Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V: Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol, 286 (2): L344-L353, 2004. DOI: 10.1152/ajplung.00139.2003

Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113 (7): 823-839, 2005. DOI: 10.1289/ehp.7339

Schins RPF, Knaapen AM: Genotoxicity of poorly soluble particles. Inhal Toxicol, 19 (Suppl.1): 189-198, 2007. DOI: 10.1080/08958370701496202

Donaldson K, Poland CA: Nanotoxicity: Challenging the myth of nano-specific toxicity. Curr Opin Biotechnol, 24 (4): 724-734, 2013. DOI: 10.1016/j.copbio.2013.05.003

Buzea C, Pacheco II, Robbie K: Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2 (4): MR17-MR71, 2007. DOI: 10.1116/1.2815690

Porter AE, Muller K, Skepper J, Midgley P, Welland M: Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography. Acta Biomater, 2 (4): 409-419, 2006. DOI: 10.1016/j. actbio.2006.02.006

Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect, 113 (11): 1555-1560, 2005. DOI: 10.1289/ehp.8006

Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H: Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol, 3:13, 2006. DOI: 10.1186/1743- 8977-3-13

Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L: The interaction of bacteria with engineered nanostructured polymeric materials: a review. ScientificWorldJournal, 2014:410423, 2014. DOI: 10.1155/2014/410423

McShan D, Ray PC, Yu H: Molecular toxicity mechanism of nanosilver. J Food Drug Anal, 22 (1): 116-127, 2014. DOI: 10.1016/j.jfda. 2014.01.010

Tran C, Hankin SM, Ross B, Aitken RJ, Jones AD, Donaldson K, Stone V, Trantra R: An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres. Report on project CB0406, 2008.

Szendi K, Varga C: Lack of genotoxicity of carbon nanotubes in a pilot study. Anticancer Res, 28, 349-352, 2008.

Alexiou C, Jurgons R, Seliger C, Iro H: Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol, 6, 2762-2768, 2006. DOI: 10.1166/jnn.2006.464

Negi PS, Jayaprakash GK, Jena BS: Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem, 80, 393-397, 2003. DOI: 10.1016/S0308-8146(02)00279-0

Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G: Multiwalled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett, 184 (3): 192-197, 2009. DOI: 10.1016/j. toxlet.2008.11.007

Maron DM, Ames BN: Revised methods for the Salmonella mutagenicity test. Mutat Res, 113, 173-215, 1983. DOI: 10.1016/0165-1161 (83)90010-9

Ames BN, Lee FD, Durston WE: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A, 70 (3): 782-786, 1973. DOI: 10.1073/pnas.70.3.782

Kılınç E: γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application. J Magn Magn Mater, 401, 949-955, 2016. DOI: 10.1016/j.jmmm.2015.11.003

Jarvis AS, Honeycutt ME, McFarland VA, Bulich AA, Bounds HC: A comparison of the Ames assay and Mutatox in assessing the mutagenic potential of contaminated dredged sediment. Ecotoxicol Environ Saf, 33 (2): 193-200, 1996. DOI: 10.1006/eesa.1996.0025

Devlin TM: Textbook of Biochemistry with Clinical Correlations. 2006.

Osugi ME, Rajeshwar K, Ferraz ERA, de Oliveira DP, Araújo ÂR, Zanoni MVB: Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity. Electrochim Acta, 54 (7): 2086-2093, 2009. DOI: 10.1016/j.electacta.2008.07.015

Co-operation OfE, Development: Test No. 471: Bacterial Reverse Mutation Test. OECD Publishing, 1997.

Franchi LP, Manshian BB, de Souza TAJ, Soenen SJ, Matsubara EY, Rosolen JM, Takahashi CS: Cyto-and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol In Vitro, 29 (7): 1319-1331, 2015. DOI: 10.1016/j.tiv.2015.05.010

Ito A, Shinkai M, Honda H, Kobayashi T: Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng, 100 (1): 1-11, 2005. DOI: 10.1263/jbb.100.1

Naya M, Kobayashi N, Endoh S, Maru J, Honda K, Ema M, Tanaka J, Fukumuro M, Hasegawa K, Nakajima M, Hayashi M, Nakanishi J: In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol, 64 (1): 124-129, 2012. DOI: 10.1016/j.yrtph.2012.05.020

Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J: Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol, 63 (2): 188-195, 2012. DOI: 10.1016/j.yrtph.2012.03.014

Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE: Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett, 155 (3): 377-384, 2005. DOI: 10.1016/j.toxlet. 2004.11.004

Gupta AK, Gupta M: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26 (18): 3995- 4021, 2005. DOI: 10.1016/j.biomaterials.2004.10.012

Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK: Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol, 8 (7): 3247-3271, 2008. DOI: 10.1166/jnn.2008.399

Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B: Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 79 (1): 113-116, 2010. DOI: 10.1016/ j.chemosphere.2009.12.056

Kılınç E: Fullerene C60 functionalized γ-Fe2O3 magnetic nanoparticle: Synthesis, characterization, and biomedical applications. Artif Cells Nanomed Biotechnol, 44 (1): 298-304, 2016. DOI: 10.3109/21691401. 2014.948182

Ghaffri Chanzanagh E, Seifdavati J, Gheshlagh FMA, Benamar HA, Sharifi RS: Effect of ZnO nanoparticles on in vitro gas production of some animal and plant protein sources. Kafkas Univ Vet Fak Derg, 24 (1): 25-32, 2018. DOI: 10.9775/kvfd.2017.18187

Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, Lee SH, Song KS, Kang CS, Yu IJ: Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol, 85 (7): 775-786, 2011. DOI: 10.1007/ s00204-010-0574-0
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Immunological and anti-Eimeria Effects of Hot Water and Methanolic Extracts of Pleurotus sajor-caju in Broiler

Muhammad Irfan ULLAH, Masood AKHTAR, Mian Muhammad AWAIS, Muhammad Irfan ANWAR, Kashfa KHALIQ

Whole Genome Sequencing of the Dzo: Genetic Implications for High Altitude Adaptation, Sterility, and Milk and Meat Production

Jingcheng ZHONG, Zhijie MA, Zhixin CHAI, Hui WANG, Chengfu ZHANG, Qiumei JI, Jinwei XIN

Mülki Tatbikat-ı Baytariyye Mektebi (Muavin Baytar Mektebi): Kuruluşu ve İşleyiş Esasları

SEDA TAN, SAVAŞ VOLKAN GENÇ

İlave Koenzim Q10 İle Beslenerek Derin Pektoral Myopati Oluşturulan Broiler Piliçlerde Miyopatinin Devrelerinin Belirlenmesi

Marko MILER, Verica MILOSEVIC, Zlatko JOJKIC, Slobodan STOJANOVIC, Dragan ZIKIC, Sinisa BJEDOV, Gordana USCEBRKA

Lipid-Laden Aqueous Humor in a Cat

Mustafa ARICA, Kurtuluş PARLAK, ELGİN ORÇUM UZUNLU

Effects of GH-AluI and MYF5-TaqI Polymorphisms on Weaning Weight and Body Measurements in Holstein Young Bulls

MEHMET ULAŞ ÇINAR, BİLAL AKYÜZ, JALE METİN KIYICI, KORHAN ARSLAN, Mahmut KALIBER, ESMA GAMZE AKSEL

Babesia spp. in Dogs from Córdoba, Colombia

Carmen GALVÁN, Jorge MIRANDA, Salim MATTAR, Juan BALLUT

Coronavirus Pnömoenteritis Sendromlu Buzağılarda Ultrastrüktürel ve İmmunohistokimyasal İncelemeler

Ivan DINEV, Katerina TODOROVA, Маrin ALEXANDROV, Yulian ANANIEV, Maya GALABOVA, Ismet KALKANOV

Kolombiya, Cordoba’daki Köpeklerde Babesia spp.

Jorge MIRANDA, Salim MATTAR, Carmen GALVÁN, Juan BALLUT

GH-AluI ve MYF5-TaqI Polimorfizmlerinin Erkek Holstein Buzağılarında Sütten Kesim Ağırlığı ve Vücut Ölçüleri Üzerine Etkileri

Mehmet Ulaş ÇINAR, Esma Gamze AKSEL, Korhan ARSLAN, Bilal AKYÜZ, Jale METİN KIYICI, Mahmut KALIBER