Antimicrobial Peptides in Housefly Larvae (Musca domestica)Affect Intestinal Lactobacillus acidophilus and Mucosal Epithelial Cells in Salmonellapullorum-infected Chickens

Kanatlı üretiminde en ciddi bağırsak hastalıklarından birine neden olan Pullorum hastalığı genellikle enfekte tavukların yemlerine antibiyotik ilavesi ile tedavi edilir. Antibiyotikler genellikle hastalığa karşı oldukça etkili olmakla birlikte ince bağırsak florasına ve mukozaya zarar vermektedir. Bu çalışmanın amacı; karasinek (Musca domestica) larvasındaki antimikrobiyal peptidlerin (AMP) pullorum hastalığının tedavisinde kullanılıp kullanılmayacağının belirlenmesidir. Çalışmada Salmonella enteric serovar Pullorum-enfekte (indüklenmiş AMP) ve enfekte olmayan (indüklenmemiş AMP) larvalardan ekstrakte edilen AMP kullanıldı. Çalışmada; (i) S. pullorum'a karşı AMP aktivitesi ve (ii) S. pullorum-enfekte civcivlerde bağırsak Lactobacillus acidophilus ve mukoza epitel hücrelerinde AMP etkileri araştırıldı. Elde edilen sonuçlar S. pullorum indüklenmiş AMP ve indüklenmemiş AMP'in her ikisinin de S. pullorum'a karşı antimikrobiyal aktivite gösterdiğini ortaya koymuştur. İndüklenmiş AMP uygulanarak tedavi edilen civcivlerin ince bağırsak L. acidophilus popülasyonu sağlıklı civcivlerinki ile benzerlik göstermekteydi. İndüklenmiş AMP; tedavi edilen civcivlerin ince bağırsak mast hücre, lenfosit ve goblet hücre sayılarında sağlıklı civcivler ile karşılaştırıldığında göreceli olarak az miktarda etkiye neden oldu. Aksine antibiyotik uygulaması özellikle duodenumda olmak üzere her üç hücre tipi sayısında genellikle düşmeye neden oldu. Sonuç olarak, karasinekten elde edilen AMP S. pullorum ile enfekte tavukların tedavisinde zararlı yan etkileri olmaksızın kullanılabilecek potansiyele sahiptir

Karasinekteki (Musca domestica) Antimikrobiyal Peptidler Salmonella pullorum ile Enfekte Tavuklarda Bağırsak Lactobacillus acidophilus ve Mukozal Epitel Hücrelerini Etkiler

Pullorum disease, which is one the most serious intestinal diseases in poultry production, is generally treated by adding antibiotics to the feed of infected chickens. Although antibiotics are generally quite effective against the disease, they can harm small intestinal flora and mucosa. The objective of this experiment was to determine if antimicrobial peptides (AMPs) from housefly (Musca domestica) larvae can be used to treat pullorum disease. The study included AMPs extracted from Salmonella enteric serovar Pullorum-infected larvae as well as non-infected ones (referred to as induced-AMPs and non-induced AMPs, respectively). Tests were then conducted to determine (i) the activity of these AMPs against S. pullorum and (ii) the effects of the AMPs on intestinal Lactobacillus acidophilus and mucosa epithelial cells in S. pullorum-infected chicks. The results showed that S. pullorum-induced AMPs and non-induced AMPs both exhibited antimicrobial activity against S. pullorum. Small intestinal L. acidophilus populations in convalescent chicks that had been treated with induced AMPs showed similar patterns to those in healthy chicks. Induced AMPs also had relatively little effect on the number of mast cells, lymphocyte cells, and goblet cells in the small intestine of convalescent chicks compared with healthy chicks. In contrast, treatment with antibiotics generally reduced the number of all three cell types, especially in the duodenum. In conclusion, AMPs from housefly larvae offer potential for effective treatment of S. pullorum-infected chickens without the harmful side effects of antibiotics

___

  • LutfulKabir SM: Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health, 7, 89-114, 2010. DOI: 10.3390/ ijerph7010089
  • Calenge F, Kaiser P, Vignal A, Beaumont C: Genetic control of resistance to salmonellosis and to salmonella carrier-state in fowl: A review. Genet Sel Evol, 42, 1-11, 2010. DOI: 10.1186/1297-9686-42-11
  • Volf J, Stepanova H, Matiasovic J: Salmonella enterica serovar typhimurium and enteritidis infection of pigs and cytokine signalling in palatinetonsils. Vet Microbiol, 156, 127-135, 2012. DOI: 10.1016/j. vetmic.2011.10.004
  • Payne LN, Nair V: The long view: 40 years of avian leucosis research. Avian Pathol, 41, 11-19, 2012. DOI: 10.1080/03079457.2011.646237
  • Shivaprasad HL: Fowl typhoid and pullorum disease. Rev Sci Tech, 19 (2): 405-424, 2000.
  • Gong JS, Xu M, Zhu CH: Antimicrobial resistance, presence of integrons and biofilm formation of Salmonella pullorum isolates from eastern China (1962-2010). Avian Pathol, 42, 290-294, 2013. DOI: 1080/03079457.2013.788129
  • Pan ZM, Geng SZ, Zhou YQ: Prevalence and antimicrobial resistance of salmonella sp. isolated from domestic animals in eastern China. J Anim Vet Adv, 9, 2290-2294, 2010. DOI: 10.3923/javaa.2010.2290.2294
  • Chambers JR, Gong J: The intestinal microbiota and its modulation for Salmonella control in chickens. Food Res Int, 44, 3149-3159, 2011. DOI: 10.1016/j.foodres.2011.08.017
  • Barrow PA, FreitisNeto OC: Pullorum disease and fowl typhoid-new thoughts on old diseases: A review. Avian Pathol, 40, 1-13, 2011. DOI: 1080/03079457.2010.542575
  • Sarmah, AK, Meyer MT, Boxall, AB: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics in the environment. Chemosphere, 65, 725-759, 2006. DOI: 1016/j.chemosphere.2006.03.026
  • Pan ZM, Wang XQ, Zhang XM, Liu XF: Changes in antimicrobial resistance among Salmonella enteric subspecies enteric serovar Pullorum isolates in China from 1962 to 2007. Vet Microbiol, 136, 387-392, 2009. DOI: 10.1016/j.vetmic.2008.11.015
  • Zasloff M: Antimicrobial peptides of multicellular organisms. Nature, , 389-395, 2002. DOI: 10.1038/415389a
  • Hancock RE, Sahl HG: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 24, 1551-1557, DOI: 10.1038/nbt1267
  • Hull R, Katete R, Ntwasa M: Therapeutic potential of antimicrobial peptides from insects. Biotechnol Mol Biol Rev, 7, 31-47, 2012.
  • Joerger RD: Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci, 82, 640-647, 2003. DOI: 10.1093/ ps/82.4.640
  • Peschel A, Sahl HG: The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 4, 529-536, 2006. DOI: 10.1038/nrmicro1441
  • Nizet V: Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol, 8, 11-26, 2006.
  • Chernysh S, Gordya N, Suborova T: Insect antimicrobial peptide prevent resistance development in bacteria. PlosOne, 10, e0130788, DOI: 10.1371/journal.pone.0130788
  • Seo MD, Won HS, Kim JH, Lee BJ: Antimicrobial peptides for therapeutic applications: A review. Molecules, 17, 12276-12286, 2012. DOI: 10.3390/molecules171012276
  • Marr AK, Gooderham WJ, Hancock RE: Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr Opin Pharmacol, 6, 472, 2006. DOI: 10.1016/j.coph.2006.04.006
  • Mygind PH, Fischer RL, Schnorr KM: Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 437, 975- , 2005. DOI: 10.1038/nature04051
  • Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV: Antimicrobial peptides: Properties and applicability. Biol Chem, 382, 597-619, 2001. DOI: 1515/BC.2001.072
  • Yi HY, Huang YD, Yu XQ: Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol, 98, 5807-5822, 2014. DOI: 10.1007/ s00253-014-5792-6
  • Pei ZH, Sun XN, Ma HX: Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva. Gene, 549, 45, 2014. DOI: 10.1016/j.gene.2014.07.028
  • Ai H, Wang FR, Xia YQ, CL Lei: Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica. Food Chem, 132, 493-498, 2012. DOI: 10.1016/j.foodchem.2011.11.033
  • Karen M, Elke C, Liliane S: Identification of 1-lysophosphatidylethanol- amine (C (16:1)) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochem Mol Biol, 34, 43-49, 2004. DOI: 10.1016/j.ibmb. 09.001
  • Anne-Kathrin P, Heiko V, Jochen W, Andreas V: Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother, 59, 2508-2514, 2015. DOI: 10.1128/AAC.05180-14
  • Zhou G, Wang JG, Shen H:Induction of maggot antimicrobial peptides and treatment effect in Salmonella pullorum-infected chickens. J Appl Poultry Res, 23, 376-383, 2014. DOI: 10.3382/japr.2013-00804
  • Afonin S, Glaser RW, Berditchevskaia M: 4-fluorophenylglycine as a label for 19FNMR structure analysis of membrane-associated peptides. Chembiochem, 4, 1151-1163, 2003. DOI: 10.1002/cbic.200300568
  • Guo BL, Han P, Guo L: The antibacterial activity of ta-doped ZnO nanoparticles. Nanoscale Res Lett, 10, 1047, 2015. DOI: 10.1186/s11671- 1047-4
  • Guo ZH, Ma X, Zhang GZ: Therapeutic effect of Baitouweng San on chicken artificially infected with pullorosis. J Tradit Chin Vet Med, 3, 31, 2013. DOI: 10.13823/j.cnki.jtcvm.2013.03.009
  • Watters AD, Bartlett MS: Fluorescence in situ hybridization in paraffin tissue sections. Mol Biotechnol, 21, 217-220, 2002. DOI: 10.1385/ MB:21:3:217
  • Alketa Q, Letizia P, Luljeta D: Spontaneous skin canine tumors: Toluidine blue stain detection of mast cells in tissue section. Albanian J Agric Sci, 13, 391-394, 2014.
  • Pal L, Brahmkhatri VP, Bera S: Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interf Sci, 483, 385-393, 2016. DOI: 10.1016/j.jcis.2016.08.043
  • Silva JP, Appelberg R, Gama FM: Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol Adv, 34, 924-940, 2016. DOI: 1016/j.biotechadv.2016.05.007
  • Sergey C, Natalia G, Tatyana S: Salmonella pullorum infection can induce the AMP production. Plos One, 10, 1-15, 2015. DOI: 10.1371/ journal.pone.0130788
  • Jahromi MF, Altaher YW, Shokryazdan P, Ebrahimi R: Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int J Biometeorol, 60, 1099-1110, 2016. DOI: 10.1007/s00484-015-1103-x
  • Dongarra ML, Rizzello V, Muccio L, Fries W, Cascio A: Mucosal immunology and probiotics. Curr Allergy Asthma Rep, 13, 19-26, 2013. DOI: 10.1007/s11882-012-0313-0
  • Murakami S, Yoshino H, Ishikawa J, Yamaguchi M: Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells. J Radiat Res, 56, 865-871, 2015. DOI: 10.1093/jrr/rrv061
  • Rashaun AP, Caitlin MT, Shirley L: Mast cells and histamine alter intestinal permeability during malaria parasite infection. Immunobiol, , 468-474, 2016. DOI: 10.1016/j.imbio.2015.11.003
  • Luo X, Zheng YY, Wen RY, Liao HF: Effects of ceftriaxone induced intestinal dysbacteriosis on lymphocytes in different tissues in mice. Immunobiol, 221, 994-1000, 2016. DOI: 10.1016/j.imbio.2016.04.003
  • Maglio M, Florian F, Vecchiet M: Majority of children with type 1 diabetes produce and deposit anti-tissue transglutaminase antibodies in the small intestine. Diabetes, 58, 1578-1584, 2009. DOI: 10.2337/ db08-0962
  • Fuchs A, Vermi W, Lee JS: Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12 and IL-15 responsive IFN-?-producing cells. Immun, 38, 769-781, 2013. DOI: 10.1016/j.immuni.2013.02.010
  • Knoop KA, McDonald KG, Newberry RD: Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol, 8, 198-210, 2015. DOI: 10.1038/mi.2014.58
  • Charlotte R: Sentinel goblet cells flush out bacteria from crypts. Nat Rev Gastroenterol Hepatol, 13, 438, 2016. DOI: 10.1038/nrgastro.2016.117
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

A Case of Trichophyton mentagrophytes Infection in RabbitsAccompanied by Farm Staff Infection in China

Xiancheng ZENG, Qingli ZHENG, Xuelin CHI

Effect of Energy Sources and Levels on Caecal Microbial Population, Jejunal Morphology, Gene Expression of Jejunal Transporters (SGLT1, FABP) and Performance of Broilers Under Heat Stress

Asghar GHAHREMANI, Ali Asghar SADEGHI, Saeed HESARAKI, Mohammad CHAMANI, Parvin SHAWRANG

Sequencing and Phylogenetic Analysis Reveal the Prevalence of Duck Hepatitis A Virus Genotype-3 in Vietnam

Huong Thi Thanh DOAN, Xuyen Thi Kim LE, Roan Thi DO, Khue Thi NGUYEN, Thanh Hoa LE

Evaluation of the Effect of Different Doses of Butaphosphan and Cyanocobalamin Combination in Dairy Cattle with Subclinical Ketosis

MEHMET ŞAHAL, ABDÜLKERİM DENİZ, Rıfat VURAL, ŞÜKRÜ KÜPLÜLÜ, İBRAHİM MERT POLAT, EKREM ÇAĞATAY ÇOLAKOĞLU, NACİ ÖCAL, Hasan Ceyhun MACUN, MERT PEKCAN, Marion OCAK

Pointer Irkı Bir Köpekte Gebelik Sürecinde Karşılaşılan İdrar Kesesi Retrofleksiyonu

Muhammed Kürşad BİRDANE, İbrahim DEMİRKAN, Erhan ÖZENÇ, Mustafa Volkan YAPRAKÇI

Research on the Report of Professor Rostafinski as a Sample of Scientific Cooperation in Animal Breeding in the First Years of the Republic of Turkey

AYŞE MENTEŞ GÜRLER, ALİ YİĞİT, ŞULE SANAL

Corneal Impression Cytology for the Diagnosis of Limbal Stem Cell Deficiency in a Dog

F. Eser ÖZGENCİL, Nurhayat GÜLMEZ, Çağrı GÜLTEKİN, Serkan SAYINER

Effects of Thymoquinone Supplementation on Somatostatin Secretion in Pancreas Tissue of Rats

BUKET BAKIR, Ebru KARADAG SAR, Sevda ELİŞ YILDIZ, HASAN ASKER

Biomechanical Parameters of Asian Elephant (Elephas maximus)Walking Gait

Siriphan KONGSAWASDI, Sittidej MAHASAWANGKUL, Pornsawan PONGSOPAWIJIT, Kajornphat BOONPRASERT, Busaba CHUATRAKOON, Nipaporn THONGLORM, Rungtiwa KANTA-IN, Tanapong TAJARERNMUANG, Korakot NGANVONGPANIT

Effects of Flavonoids from Mulberry Leaves and Candida tropicalison Performance and Nutrient Digestibility in Calves

Le-Ying ZHANG, Pei-Bin QU, Yan TU, Chun-Tao YANG, Qi-Yu DIAO