Antibakteriyel İlaçların Farmakokinetik/Farmakodinamik Entegrasyonu Üzerine Metodolojik Bir İnceleme

Antimikrobiyal ajanların uygun olmayan şekillerde kullanımı, bakterilerin ilaçlara direncine ve bakteri ekolojisinde değişikliklere neden olabilir. Özellikle çoklu ilaca dirençli bakterilerin ortaya çıkması, ilaçların antibakteriyel etkinliğini ciddi şekilde etkilemekte ve bu durum insan ve hayvanların sağlığını ve yaşamını tehdit etmektedir. Farmakokinetik/Farmakodinamik (PK/PD) modeller, PK ve PD verileri ile antibakteriyel etki arasındaki ilişkiyi analiz etmek için kullanılabilmektedir. PK/PD modelleri, dozaj rejimlerinin optimizasyonu, yeni ilaçların geliştirilmesi, duyarlılık sınır değerlerinin belirlenmesi ve dirençli mutantların analizleri için değerli rehberlik sağlarlar. PK/PD entegrasyonunun temel modelleri in vitro PK/PD, ex vivo PK/PD ve in vivo PK/PD’dir. Bu modellerin her birinin kendine göre avantajları ve dezavantajları vardır. Bu nedenle, uygun PK/PD modelinin nasıl seçileceğinin bilinmesi, doğru PK/PD verilerinin elde edilmesinde büyük bir etkiye sahiptir. Bu derlemede, yaygın olarak kullanılan PK/PD yöntemlerini açıklamaktayız. Böylelikle, ilaç rejimlerini optimize etmek ve ilaca dirençli bakteriyel enfeksiyonları önlemek ve kontrol etmek için bir referans sağlamaktayız.

A Methodological Review on the Pharmacokinetic/Pharmacodynamic Integration of Antibacterial Drugs

Inappropriate application of antimicrobial agents can result in resistance by bacteria to drugs and changes in bacterial ecology. In particular, the emergence of multi-drug resistant bacteria seriously aff ects the antibacterial effi cacy of drugs, which threatens the health and lives of humans and animals. Pharmacokinetic/Pharmacodynamic (PK/PD) models can be used to analyze the relationship between PK and PD data and the antibacterial eff ect. PK/PD models provide valuable guidance for optimization of dosage regimens, development of new drugs, setting of susceptibility breakpoints, and analyses of resistant mutants. Th e main models of PK/PD integration are in vitro PK/PD, ex vivo PK/PD, and in vivo PK/PD. Each of these models has its own advantages and disadvantages. Hence, knowing how to choose the appropriate PK/PD model has a huge infl uence on obtaining accurate PK/PD data. In this review, we describe the commonly used PK/PD methods. In this way, we provide a reference for optimizing drug regimens and preventing and controlling drug-resistant bacterial infections.

___

  • 1. Laxminarayan R, Sridhar D, Blaser M, Wang M, Woolhouse M: Achieving global targets for antimicrobial resistance. Science, 353 (6302): 874-875, 2016. DOI: 10.1126/science.aaf9286
  • 2. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis, 16 (2): 161-168, 2016. DOI: 10.1016/S1473-3099(15)00424-7
  • 3. Lozanoa-Huntelman NA, Singh N, Valencia A, Mira P, Sakayan M, Boucher I, Tang S, Brennan K, Gianvecchio C, Fitza-Gibbon S, Yeh P: Evolution of antibiotic cross‐resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window. Evol Appl, 13 (4): 808-823, 2020. DOI: 10.1111/eva.12903
  • 4. Rodríguez-Gascón A, Solinís MÁ, Isla A: The role of PK/PD analysis in the development and evaluation of antimicrobials. Pharmaceutics, 13 (6): 833, 2021. DOI: 10.3390/pharmaceutics13060833
  • 5. Toutain PL, Pelligand L, Lees P, Bousquet‐Mélou A, Ferran AA, Turnidge JD: The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. J Vet Pharmacol Ther, 44 (2): 172-200, 2021. DOI: 10.1111/jvp.12917
  • 6. Asín-Prieto E, Rodríguez-Gascón A, Isla A: Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother, 21 (5): 319-329, 2015. DOI: 10.1016/j.jiac.2015.02.001
  • 7. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL: Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J Antimicrob Chemoth, 55 (5): 601-607,2005. DOI: 10.1093/jac/dki079
  • 8. Rajman I: PK/PD modelling and simulations: utility in drug development. Drug Discov Today, 13 (7-8): 341-346, 2008. DOI: 10.1016/j.drudis. 2008.01.003
  • 9. Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB: What antibiotic exposures are required to suppress the emergence of resistance for Gramnegative bacteria? A systematic review. Clin Pharmacokinet, 58 (11): 1407- 1443, 2019. DOI: 10.1007/s40262-019-00791-z
  • 10. Yan L, Xie S, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Yuan Z, Huang L: Pharmacokinetic and pharmacodynamic modeling of cyadox against Clostridium perfringens in swine. Sci Rep, 7 (1): 4064, 2017. DOI: 10.1038/ s41598-017-03970-9
  • 11. Onufrak NJ, Forrest A, Gonzalez D: Pharmacokinetic and pharmacodynamic principles of anti-infective dosing. Clin Ther, 38 (9): 1930-1947, 2016. DOI: 10.1016/j.clinthera.2016.06.015
  • 12. Blondeau JM, Hansen G, Metzler K, Hedlin P: The role of PK/ PD parameters to avoid selection and increase of resistance: Mutant prevention concentration. J Chemotherapy, 16 (Suppl. 3): 1-19, 2004. DOI: 10.1080/1120009X.2004.11782371
  • 13. Mouton JW, Brown DFJ, Apfalter P, Canton R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G: The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: The EUCAST approach. Clin Microbiol Infect, 18 (3): E37-E45, 2012. DOI: 10.1111/j.1469-0691.2011.03752.x
  • 14. Frei CR, Wiederhold NP, Burgess DS: Antimicrobial breakpoints for Gram-negative aerobic bacteria based on pharmacokinetic-pharmacodynamic models with Monte Carlo simulation. J Antimicrob Chemoth, 61 (3): 621-628, 2008. DOI: 10.1093/jac/dkm536
  • 15. Thorsted A, Tano E, Kaivonen K, Sjölin J, Friberg LE, Nielsen EI: Extension of pharmacokinetic/pharmacodynamic time-kill studies to include lipopolysaccharide/endotoxin release from Escherichia coli exposed to cefuroxime. Antimicrob Agents Chemother, 64 (4):e02070-19, 2020. DOI: 10.1128/AAC.02070-19
  • 16. Ferro BE, van Ingen J, Wattenberg M, van Soolingen D, Mouton JW: Time-kill kinetics of antibiotics active against rapidly growing mycobacteria. J Antimicrob Chemother, 70 (3): 811-817, 2015. DOI: 10.1093/jac/dku431
  • 17. Cheah SE, Li J, Nation RL, Bulitta JB: Novel rate-area-shape modeling approach to quantify bacterial killing and regrowth for in vitro static timekill studies. Antimicrob Agents Chemother, 59 (1): 381-388, 2015. DOI: 10.1128/AAC.04182-14
  • 18. Zhang N, Gu X, Ye X, Wu X, Zhang B, Zhang L, Shen X, Jiang H, Ding H: The PK/PD interactions of doxycycline against Mycoplasma gallisepticum. Front Microbiol, 7, 653, 2016. DOI: 10.3389/fmicb.2016.00653
  • 19. Nolting A, Dalla Costa T, Rand KH, Derendorf H: Pharmacokineticpharmacodynamic modeling of the antibiotic effect of piperacillin in vitro. Pharm Res, 13 (1): 91-96, 1996. DOI: 10.1023/A:1016085402278
  • 20. Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR: Pharmacodynamic functions: A multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother, 48 (10): 3670- 3676, 2004. DOI: 10.1128/AAC.48.10.3670-3676.2004
  • 21. Foerster S, Gustafsson TN, Brochado AR, Desilvestro V, Typas A, Unemo M: The first wide‐scale drug repurposing screen using the Prestwick Chemical Library (1200 bioactive molecules) against Neisseria gonorrhoeae identifies high in vitro activity of auranofin and many additional drugs. Apmis, 128 (3): 242-250, 2020. DOI: 10.1111/apm.13014
  • 22. Gloede J, Scheerans C, Derendorf H, Kloft C: In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J Antimicrob Chemother, 65 (2): 186-201, 2010. DOI: 10.1093/jac/dkp434
  • 23. Budha NR, Lee RB, Hurdle JG, Lee RE, Meibohm B: A simple in vitro PK/PD model system to determine time-kill curves of drugs against Mycobacteria. Tuberculosis, 89 (5): 378-385, 2009. DOI: 10.1016/j.tube. 2009.08.002
  • 24. Vaddady PK, Trivedi A, Rathi C, Madhura DB, Liu J, Lee RE, Meibohm B: Dynamic time-kill curve characterization of spectinamide antibiotics 1445 and 1599 for the treatment of tuberculosis. Eur J Pharm Sci, 127, 233-239, 2019. DOI: 10.1016/j.ejps.2018.11.006
  • 25. Meletiadis J, Al-Saigh R, Velegraki A, Walsh TJ, Roilides E, Zerva L: Pharmacodynamic effects of simulated standard doses of antifungal drugs against Aspergillus species in a new in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother, 56 (1): 403-410, 2012. DOI: 10.1128/AAC.00662-11
  • 26. Cadwell JJS: The hollow fiber infection model for antimicrobial pharmacodynamics and pharmacokinetics. Adv Pharmacoepidem Drug Safety, S1:007, 1-5, 2012. DOI: 10.4172/2167-1052.S1-007
  • 27. Jacobsson S, Golparian D, Oxelbark J, Alirol E, Franceschi F, Gustafsson TN, Brown D, Louie A, Drusano G, Unemo M: Pharmacodynamic evaluation of dosing, bacterial kill, and resistance suppression for zoliflodacin against Neisseria gonorrhoeae in a dynamic hollow fiber infection model. Front Pharmacol, 12:682135, 2021. DOI: 10.3389/fphar.2021.682135
  • 28. Bhagunde P, Zhang Z, Racine F, Carr D, Wu J, Young K, Rizk ML: A translational pharmacokinetic/pharmacodynamic model to characterize bacterial kill in the presence of imipenem-relebactam. Int J Infect Dis, 89, 55-61, 2019. DOI: 10.1016/j.ijid.2019.08.026
  • 29. Li XD, Chi SQ, Wu LY, Liu C, Sun T, Hong J, Chen X, Chen XG, Wang GS, Yu DJ: PK/PD modeling of ceftiofur sodium against Haemophilus parasuis infection in pigs. BMC Vet Res, 15 (1):272, 2019. DOI: 10.1186/ s12917-019-2008-4
  • 30. Lee HK, DeVito V, Vercelli C, Tramuta C, Nebbia P, Re G, Kovalenko K, Giorgi M: Ex vivo antibacterial activity of levofloxacin against Escherichia coli and its pharmacokinetic profile following intravenous and oral administrations in broilers. Res Vet Sci, 112, 26-33, 2017. DOI: 10.1016/j. rvsc.2017.01.003
  • 31. Dorey L, Pelligand L, Cheng Z, Lees P: Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida. J Vet Pharmacol Ther, 40 (5): 505-516, 2017. DOI: 10.1111/ jvp.12385
  • 32. Aliabadi FS, Ali BH, Landoni MF, Lees P: Pharmacokinetics and PKPD modelling of danofloxacin in camel serum and tissue cage fluids. Vet J, 165 (2): 104-118, 2003. DOI: 10.1016/S1090-0233(02)00258-7
  • 33. Aliabadi FS, Lees P: Pharmacokinetics and pharmacodynamics of danofloxacin in serum and tissue fluids of goats following intravenous and intramuscular administration. Am J Vet Res, 62 (12): 1979-1989, 2001. DOI: 10.2460/ajvr.2001.62.1979
  • 34. Zhang BX, Lu XX, Gu XY, Li XH, Gu MX, Zhang N, Shen XG, Ding HZ: Pharmacokinetics and ex vivo pharmacodynamics of cefquinome in porcine serum and tissue cage fluids. Vet J, 199 (3): 399-405, 2014. DOI: 10.1016/j.tvjl.2013.12.015
  • 35. Maan MK, Sattar A, Mi K, Bakr Shabbir MA, Xie S, Xin L, Ahmed S, Algharib SA, Huang L, Yuan Z: Integration of PK/PD for dose optimization of aditoprim against Trueperella pyogenes causing endometritis in bovines. Microb Pathog, 142:104097, 2020. DOI: 10.1016/j.micpath.2020.104097
  • 36. Lei Z, Liu Q, Xiong J, Yang B, Yang S, Zhu Q, Li K, Zhang S, Cao J, He Q: Pharmacokinetic and pharmacodynamic evaluation of marbofloxacin and PK/PD modeling against Escherichia coli in pigs. Front Pharmacol, 8:542, 2017. DOI: 10.3389/fphar.2017.00542
  • 37. Luo W, Wang D, Qin H, Chen D, Pan Y, Qu W, Huang L, Xie S: Formulation of a rational dosage regimen of ceftiofur hydrochloride oily suspension by pharmacokinetic-pharmacodynamic (PK-PD) model for treatment of swine Streptococcus suis infection. J Vet Sci, 22 (6):e41, 2021. DOI: 10.4142/jvs.2021.22.e41
  • 38. Xiao X, Lan W, Zhao Y, Li R, Liu Y, Liu J, Wang Z: In vivo pharmacokinetic and pharmacodynamic (PK/PD) modeling and establishment of the PK/PD cutoff of florfenicol against Pasteurella multocida in ducks. Front Microbiol, 11:616685, 2021. DOI: 10.3389/fmicb.2020.616685
  • 39. Zhang N, Wu Y, Huang Z, Yao L, Zhang L, Cai Q, Shen X, Jiand H, Ding H: The PK-PD relationship and resistance development of danofloxacin against Mycoplasma gallisepticum in an in vivo infection model. Front Microbiol, 8: 926, 2017. DOI: 10.3389/fmicb.2017.00926
  • 40. Nakamura R, Ito-Horiyama T, Takemura M, Toba S, Matsumoto S, Ikehara T, Tsuji M, Sato T, Yamano Y: In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob Agents Chemother, 63 (9):e02031-18,
  • 41. Li X, Chen Y, Xu X, Li Y, Fan Y, Liu X, Bian X, Wu H, Zhao X, Feng M, Guo B, Zhang J: Pharmacokinetics and pharmacodynamics of nemonoxacin in a neutropenic murine lung infection model against Streptococcus pneumoniae. Front Pharmacol, 12:658558, 2021. DOI: 10.3389/ fphar.2021.658558
  • 42. Watanabe E, Matsumoto K, Ikawa K, Yokoyama Y, Shigemi A, Enoki Y, Umezaki Y, Nakamura K, Ueno K, Terazono H, Morikawa, Takeda Y: Pharmacokinetic/pharmacodynamic evaluation of teicoplanin against Staphylococcus aureus in a murine thigh infection model. J Glob Antimicrob Resist, 24, 83-87, 2021. DOI: 10.1016/j.jgar.2020.11.014
  • 43. Zhang L, Wu X, Huang Z, Zhang N, Wu Y, Cai Q, Shen X, Ding H: Pharmacokinetic/pharmacodynamic assessment of cefquinome against Actinobacillus pleuropneumoniae in a piglet tissue cage infection model. Vet Microbiol, 219, 100-106, 2018. DOI: 10.1016/j.vetmic.2018.02.027
  • 44. Cao C, Qu Y, Sun M, Qiu Z, Huang X, Huai B, Lu Y, Zeng Z: In vivo antimicrobial activity of marbofloxacin against Pasteurella multocida in a tissue cage model in calves. Front Microbiol, 6:759, 2015. DOI: 10.3389/ fmicb.2015.00759
  • 45. Yao Q, Gao L, Xu T, Chen Y, Yang X, Han M, He X, Li C, Zhou R, Yang Y: Amoxicillin administration regimen and resistance mechanisms of Staphylococcus aureus established in tissue cage infection model. Front Microbiol, 10:1638, 2019. DOI: 10.3389/fmicb.2019.01638
  • 46. Xiong M, Wu X, Ye X, Zhang L, Zeng S, Huang Z, Wu Y, Sun J, Ding H: Relationship between cefquinome PK/PD parameters and emergence of resistance of Staphylococcus aureus in rabbit tissue-cage infection model. Front Microbiol, 7:874, 2016. DOI: 10.3389/fmicb.2016.00874
  • 47. Bernardi PM, Barreto F, Dalla Costa T: Application of a LC-MS/ MS method for evaluating lung penetration of tobramycin in rats by microdialysis. J Pharm Biomed Anal, 134:340-345, 2017. DOI: 10.1016/j. jpba.2016.10.023
  • 48. Yang B, Gao JD, Cao XY, Wang QY, Sun GZ, Yang JJ: Lung microdialysis study of florfenicol in pigs after single intramuscular administration. J Vet Pharmacol Ther, 40 (5): 530-538, 2017. DOI: 10.1111/jvp.12387
  • 49. Zhang L, Yao L, Kang Z, Huang Z, Gu X, Shen X, Ding H: Microdialysis determination of cefquinome pharmacokinetics in murine thigh from healthy, neutropenic, and Actinobacillus pleuropneumoniae-infected mice. Front Pharmacol, 10:249, 2019. DOI: 10.3389/fphar.2019.00249
  • 50. Zhang L, Zhou Z, Gu X, Huang S, Shen X, Ding H: Murine thigh microdialysis to evaluate the pharmacokinetic/pharmacodynamic integration of cefquinome against Actinobacillus pleuropneumoniae. Front Vet Sci, 7:448, 2020. DOI: 10.3389/fvets.2020.00448
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Otolog Trombositten Zengin Plazma Üreme Mevsimi Dışında Koç Spermatozoalarının Kriyoprezervasyonu Üzerinde Olumlu Etkiye Sahiptir

Davut KOCA, Mustafa AKKASOGLU, Hakan SAGIRKAYA, Mehmet Melih YILMAZ, Mehmet Ali KILIC, Ahmet AKTAR, Selim ALCAY

Kedilerde Desmatoselin Eşlik Ettiği Derin Kornea Ülserlerinde PRF Membran Kullanılarak Cerrahi Tedavinin Değerlendirilmesi: Retrospektif Çalışma (2019- 2021)

Aynur DEMİR, Dilek OLGUN ERDİKMEN, Zeynep TOL SEVİM, Yusuf ALTUNDAĞ

Antibakteriyel İlaçların Farmakokinetik/Farmakodinamik Entegrasyonu Üzerine Metodolojik Bir İnceleme

Hongjuan WANG, Longfei ZHANG, Jianhe HU

Isı Stresine Maruz Kalmış Süt Keçilerinde Rumen Korumalı Metiyonin İlavesinin Süt Performansı, Plazma Biyokimyasal İndeksleri ve Amino Asit Konsantrasyonu Üzerine Etkileri

Peihua ZHANG, Li LI, Xinyi LAN, Hao LING, Jintao QU, Qianming JIANG, Shengguo TANG

Hidrojen, MCP1 ve CCR2 Ekspresyonlarını Engelleyerek Diyabetik Sıçanlarda Nöropatik Ağrıyı Hafifletir

Pin WANG, Lanying YOU, Qian LI, Hao WANG, Wei CHEN, Yun LONG

Cezayir’in Kuzeydoğusundaki Koyun Plasentalarında Toxoplasma gondii’nin Moleküler Tespiti

Th anina Ghania AIT HAMOUDA, Nassima AIT ISSAD, Khaled ABDELOUAHED, Nora MIMOUNE, Salim BEKHOUCHE, Racha BOUBEUKER, Djilali DEGUI, Rachid KAIDI, Djamel KHELEF

Hu Koyunlarında Farklı Batın Genişliklerinin Doğum Sonrası Uterus İnvolüsyonu Oranına Etkisi

Xi CHEN, Zongling LIU, Wenqian ZHANG, Chunhao ZHU, Yukun ZHAO, Yanping WANG, Weibin ZENG

Farklı Süt Sığırı Irklarında Kan ve Süt Beta-hidroksibütirik Asit Düzeyleri ve Holstein’larda Subklinik Ketozisin Postpartum Hastalıklar, Sürüden Ayırma, Vücut Kondisyon Skoru, Parite ve Süt Verimi İle İlişkisi

Ali Cesur ONMAZ, Abdülkerim DENİZ, Serdar DEMİR, Kemal AKSOY

Aflatoksin B1 İle Enfekte Edilen Etlik Piliçlerde Yeni Kombine Adsorbanın Patolojik Lezyonların Oluşumuna Etkilerinin Değerlendirilmesi

Biljana DJURDJEVIĆ, Marko PAJIĆ, Slobodan KNEŽEVIĆ, Vladimir POLAČEK, Ksenija NEŠIĆ, Ivana VUČIĆEVIĆ, Dušica OSTOJIĆ ANDRIĆ

Th e Eff ect of Diff erent Storage Temperature on Hu Ram Sperm Parameters

Yan KANG, Liuming ZHANG, Tariq SOHAIL, Yanhu WANG, Xuyang WANG, Xiaomei SUN, Yongjun LI