Akut Stres Altındaki Erkek Ratların Hipokampusundaki Çinko Taşıyıcı Genler 1-4’ün Ekspresyonu Üzerine Çinko Oksit Nanopartiküllerinin Etkileri

Canlı organizmalarda çinko homeostazını çinko taşıyıcılar (ZnT) ve ZIP proteinleri korur. Öte yandan, çinko oksit nanopartiküllerinin (ZnO NP)biyolojik sistemlerde Znt genlerinin ekspresyonu üzerine etkileri henüz tam olarak netlik kazanmamıştır. Bu nedenle, bu deneysel çalışmada,ZnO NP’lerin akut stres altındaki erkek ratların hipokampusundaki Znt1-4 genlerinin ekspresyonu üzerine etkilerini araştırmaya çalıştık. Yetişkinerkek ratlar, kontrol, yalnızca 5 mg/kg ve 10 mg/kg ZnO NP uygulananlar ve 90 dk’lık kısıtlamaya bağlı oluşan stres süresince 5 mg/kg ve 10mg/kg ZnO NP uygulananlar olmak üzere gruplara ayrıldı. İlgili genlerin ekspresyonlarındaki değişiklikler gerçek zamanlı qRT-PCR kullanılarakizlendi. ZnT4 protein ekspresyonu ayrıca Western Blot yöntemi ile ölçüldü. Gerçek zamanlı qRT-PCR ekspresyon analizi, stres uygulanan gruptaZnt1 gen ekspresyonunda bir artışın olduğunu, 10 mg/kg ZnO NP uygulanan grupta ise Znt1 ve Znt4 genlerinin ekspresyonunda önemli ölçüdebir artış olduğunu ortaya çıkardı. Ayrıca, stres altında 10 mg/kg ZnO NP uygulanan grupta, Znt2 gen ekspresyonunda azalma saptanırken, Znt4 gen ekspresyonunda artış belirlendi. Bunun haricinde, 10 mg/kg ZnO NP uygulanan stres ve normal gruplarda uygulamalardan sonra ZnT4protein seviyeleri önemli ölçüde arttı. Bu sonuçlara göre, ZnO NP uygulaması, stres koşulları altında çinko taşıyıcı bazı genlerin ekspresyonundadeğişikliklere neden olabilir ve ZnT4 protein seviyesini artırabilir. Bu nedenle, bu çalışma, biyotıp ve farmakogenetik çalışmaları tasarlamak içindeğerli bir yaklaşım sunmaktadır.

Eff ects of Zinc Oxide Nanoparticles on the Expression of ZincTransporter 1-4 Genes in the Hippocampus of Male Rats UnderAcute Stress

Zinc transporters (ZnT) and ZIP proteins maintain Zinc homeostasis in the live organisms. On the other hand, the impacts of zinc oxide nanoparticles (ZnO NPs) on the expression of the Znt genes in biological systems were not clear yet. So that in this experimental study we have tried to find the eff ects of ZnO NPs on Znt1-4 genes expression in the hippocampus of male rats under acute stress. Adult male rats were divided into groups of control and treated with 5 or 10 mg/kg of ZnO NPs alone and under acute restraint stress for 90 min. The changes in the expression of the selected genes were monitored using real-time qRT-PCR. The ZnT4 protein expression also was measured by Western blotting. Real-time qRT-PCR expression analysis revealed that the Znt1 gene expression was up-regulated in the stress group, while the expression of the Znt1 and Znt4 genes was significantly up-regulated in the group receiving 10 mg/kg of ZnO NPs. Furthermore, in the ZnO NPs 10 mg/kg group under stress, the Znt2 gene expression was down-regulated, while the Znt4 gene expression was up-regulated. Moreover, the levels of ZnT4 protein were significantly increased after 10 mg/kg of ZnO NPs injection in the stress and normal groups. According to these results ZnO NPs administration can cause changes in the expression of a number of zinc transporter genes under stress conditions and increases the ZnT4 protein level. Therefore, this is a valuable approach for forecast investigation in biomedicine and pharmacogenetics studies.

___

  • 1. Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME: Recent aspects of the efects of zinc on human health. Arch Toxicol, 94 (5): 1443- 1460, 2020. DOI: 10.1007/s00204-020-02702-9
  • 2. Herman JP, Cullinan WE: Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci, 20, 78-84, 1997. DOI: 10.1016/s0166-2236(96)10069-2
  • 3. Gower-Winter SD, Levenson CW: Zinc in the central nervous system: From molecules to behavior. Biofactors, 38 (3): 186-193, 2012. DOI: 10.1002/biof.1012
  • 4. Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M: Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res, 226 (1): 259-264, 2012. DOI: 10.1016/j.bbr.2011.09.026
  • 5. Dou X, Tian X, Zheng Y, Huang J, Shen Z, Li H, Wang X, Mo F, Wang W, Wang S, Shen H: Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav Brain Res, 273, 133-138, 2014. DOI: 10.1016/j.bbr.2014.07.040
  • 6. Prasad AS: Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr, 28, 257-265, 2009. DOI: 10.1080/07315724.2009.10719780
  • 7. Song Y, Elias V, Wong CP, Scrimgeour AG, Ho E: Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc. Biometals, 23 (1): 51-58, 2010. DOI: 10.1007/s10534-009-9266-8
  • 8. Pfaender S, Föhr K, Lutz AK, Putz S, Achberger K, Linta L, Liebau S, Boeckers TM, Grabrucker AM: Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem Cells. Neural Plast, 2016:3760702, 2016. DOI: 10.1155/2016/3760702
  • 9. Bin BH, Seo J, Kim ST: Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res, 2018:9365747, 2018. DOI: 10.1155/2018/9365747
  • 10. Downey AM, Hales BF, Robaire B: Zinc transport differs in rat spermatogenic cell types and is affected by treatment with cyclophosphamide. Biol Reprod, 95 (1): 22, 2016. DOI: 10.1095/biolreprod.116.140558
  • 11. Jobarteh ML, Mcardle HJ, Holtrop G, Sise EA, Prentice AM, Moor SE: mRNA levels of placental iron and zinc transporter genes are upregulated in gambian women with low iron and zinc status. J Nutr, 147, 1401-1409, 2017. DOI: 10.3945/jn.116.244780
  • 12. Cousins RJ, Liuzzi JP, Lichten LA: Mammalian zinc transport, trafficking and signals. J Biol Chem, 281 (34): 24085-24089, 2006. DOI: 10.1074/jbc.R600011200
  • 13. Lee JY, Kim JS, Byun HR, Palmiter RD, Koh JY. Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res, 1418, 12-22, 2011. DOI: 10.1016/j.brainres.2011.08.055
  • 14. McCormick NH, Kelleher SL: ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol, 303 (3): C291-C297, 2012. DOI: 10.1152/ajpcell.00443.2011
  • 15. Bahmani M: A new method for promoting biologic synthesis and reducing the size of titanium dioxide nanoparticles (Tio2 NPs) synthesized by Origanum vulgare. Plant Biotechnol Persa, 1 (1): 10-12, 2019. DOI: 10.29252/pbp.1.1.10
  • 16. Scherzad A, Meyer T, Kleinsasser N, Hackenberg S: Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity. Materials, 10 (12): 1427, 2017. DOI: 10.3390/ma10121427
  • 17. Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T: Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS One, 11 (10): e0164434, 2016. DOI: 10.1371/journal.pone.0164434
  • 18. Kozlowska K: A stress-system model for functional neurological symptoms. J Neurol Sci, 383, 151-152, 2017. DOI: 10.1016/j.jns.2017.10.044
  • 19. Torabi M, Kesmati M, Galehdari H, Varzi HN, Pourreza N: MgO and ZnO nanoparticles anti-nociceptive effect modulated by glutamate level and NMDA receptor expression in the hippocampus of stressed and non-stressed rats. Physiol Behav, 214:112727, 2020. DOI: 10.1016/j. physbeh.2019.112727
  • 20. Portbury SD, Adlard PA: Zinc signal in brain diseases. Int J Mol Sci, 18 (12): 2506, 2017. DOI: 10.3390/ijms18122506
  • 21. Bafaro E, Liu Y, Xu Y, Dempski RE: The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther, 2:17029, 2017. DOI: 10.1038/sigtrans.2017.29
  • 22. Nuttall JR, Oteiza PI: Zinc and the aging brain. Genes Nutr, 9 (1): 379, 2014. DOI: 10.1007/s12263-013-0379-x
  • 23. Olesen RH, Hyde TM, Kleinman JE, Smidt K, Rungby J, Larsen A: Obesity and age-related alterations in the gene expression of zinctransporter proteins in the human brain. Transl Psychiatry, 6:e838, 2016. DOI: 10.1038/tp.2016.83
  • 24. Cieślik K, Sowa-Kucma M, Ossowska G, Legutko B, Wolak M, Opoka W, Nowak G: Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol Rep, 63 (2): 537- 543, 2011. DOI: 10.1016/s1734-1140(11)70520-5
  • 25. Zheng Y, Huang J, Tao L, Shen Z, Li H, Mo F, Wang X, Wang S, Shen H: Corticosterone increases intracellular Zn2+ release in hippocampal HT-22 cells. Neurosci Lett, 588, 172-177, 2015. DOI: 10.1016/j.neulet.2015.01.016
  • 26. Lehvy AI, Horev G, Golan Y, Glaser F, Shammai Y, Assaraf YG: Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discov, 5:144, 2019. DOI: 10.1038/ s41420-019-0224-0
  • 27. Chowanadisai W, Kelleher SL, Lönnerdal B: Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J Nutr, 135 (5): 1002-1007, 2005. DOI: 10.1093/jn/135.5.1002
  • 28. Torabi M, Kesmati M, Pourreza N, Varzi HN, Galehdari H: Neurobehavioral and biochemical modulation following administration of MgO and ZnO nanoparticles in the presence and absence of acute stress. Life Sci, 203, 72-82, 2018. DOI: 10.1016/j.lfs.2018.04.023
  • 29. Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA: The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res, 1200, 89-98, 2008. DOI: 10.1016/j.brainres.2007.11.077
  • 30. Rafało-Ulinska A, Poleszak E, Szopa A, Serefko A, Rogowska M, Sowa I, Wojciak M, Muszynska B, Krakowska A, Gdula-Argasinska J, Kala K, Jasiewicz B, Opoka W, Szewczyk B, Nowak G: Imipramine influences body distribution of supplemental zinc which may enhance antidepressant action. Nutrients, 12 (9): 2529, 2020. DOI: 10.3390/ nu12092529
  • 31. Ma F, Wo Y, Li H, Chang M, Wei J, Zhao S, Sun P: Effect of the source of zinc on the tissue accumulation of zinc and jejunal mucosal zinc transporter expression in holstein dairy calves. Animals, 10 (8): 1246, 2020. DOI: 10.3390/ani10081246
  • 32. Turan B: A brief overview from the physiological and detrimental roles of zinc homeostasis via zinc transporters in the heart. Biol Trace Elem Res, 188 (1): 160-176, 2019. DOI: 10.1007/s12011-018-1464-1
  • 33. McAllister BB, Dyck RH: Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev, 80, 329-350, 2017. DOI: 10.1016/j.neubiorev.2017.06.006
  • 34. McAllister BB, Pochakom A, Fu S, Dyck RH: Effects of social defeat stress and fluoxetine treatment on neurogenesis and behavior in mice that lack zinc transporter 3 (ZnT3) and vesicular zinc. Hippocampus, 30 (6): 623-637, 2020. DOI: 10.1002/hipo.23185
  • 35. Fukada T, Bin BH, Hara T, Takagishi T, Yoshigai E, Lian X: Zinc transporters in physiology and pathophysiology. In, Brewer GJ, Prasad AS (Eds): Essential and Toxic Trace Elements and Vitamins in Human Health, 55-67, Academic Press, 2020.
  • 36. Rafalo A, Zadrozna M, Nowak B, Kotarska K, Wiatrowska K, Pochwat B, Sowa-Kucma M, Misztak P, Nowak G, Szewczyk B: The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression. Prog Neuropsychopharmacol Biol Psychiatry,72, 36-48, 2017. DOI: 10.1016/j.pnpbp.2016.08.009
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Embriyonik Tavuk Göğüs Kasında miRNA Ekspresyonunun Yüksek Verimli Dizi Analizi

Lei ZHANG, Song REN, Herong LIAO, Jie SUN

Bm86 Genetic Diversity of Indigenous Tick Population from Punjab Province Pakistan

Muhammad Faiz RASOOL, Nisar AHMAD, Haroon AKBAR, Tahir YAQUB, Kamran ASHRAF, Aft ab Ahmad ANJUM, Mian Abdul HAFEEZ, Muhammad Muddassir ALI

Jelatin/Kitosan Kaplamanın Dondurarak Muhafaza Edilen Tavuk Köftesi Üzerindeki Etkisi: Bir Yanıt Yüzey Metodu Uygulaması

Aydın ERGE, Ömer EREN

The Usability of Cytological and Immunocytological Methods for Rapid Diagnosis of Encephalitic Listeriosis in Ruminants

Özgür ÖZDEMİR, Mustafa ORTATATLI, Funda TERZİ, Fatih HATİPOĞLU, Mustafa Kemal ÇİFTÇİ, MEHMET BURAK ATEŞ

Eff ects of Zinc Oxide Nanoparticles on the Expression of Zinc Transporter 1-4 Genes in the Hippocampus of Male Rats Under Acute Stress

Maede NILECHI, Akram EIDI, Hamid GALEHDARI, Mahnaz KESMATI

Çin’in Qinghai-Tibet Platosu’ndaki Tibet Koyunlarında Kistik Ekinokokkozisin Tanısında Rekombinant EgAgB8/2 Antijeninin Değerlendirilmesi

Yong FU, Mohammed YOSRI, Xiuying SHEN, Gengqiu JIUNAI, Youlu CHEN, Yijuan MA, Hong DUO, Zhihong GUO, Xueyong ZHANG, Tiancong SUN

Development of Humoral Immune Response to Thermostable Newcastle Disease Vaccine Strain I-2 in Ring-Necked Pheasant (Phasianus colchicus)

Faisal SIDDIQUE, Rao Zahid ABBAS, Asif IQBAL, Masood RABBANI, Azhar RAFIQUE, Irshad HUSSAIN, Rais AHMED, M. Shahid MAHMOOD, Alireza LOTFI

Ruminantlarda Botulinum Nörotoksin Serotip C ve D’nin Saptanması ve Bunların SNAP-25 ve Sinaptobrevin Ekspresyonları Üzerindeki Etkileri: İmmunohistokimyasal Bir Çalışma

Mustafa ORTATATLI, Funda TERZİ, Mehmet Burak ATEŞ, Mustafa Kemal ÇİFTÇİ, Zeynep ÇELİK

Farklı Çinko Kaynaklarının Gebe Keçi ve Yavrularında Büyüme Performansı, Serum Biyokimyasal İndeksleri ve Çinko Metabolizması Üzerine Etkileri

Chuanshe ZHOU, Qiongxian YAN, Zhiliang TAN, Xilin LI, Mengli ZHENG, Peihua ZHANG

Detection of Botulinum Neurotoxin Serotypes C and D, and Their Eff ects on Expressions of SNAP-25 and Synaptobrevin in Ruminants: An Immunohistochemical Study

Mehmet Burak ATEŞ, Funda TERZİ, Mustafa Kemal ÇİFTÇİ, Mustafa ORTATATLI, Zeynep ÇELİK