Detection of Botulinum Neurotoxin Serotypes C and D, and Their Eff ects on Expressions of SNAP-25 and Synaptobrevin in Ruminants: An Immunohistochemical Study

In humans and animals, botulism is a disease characterized by generalized and progressive paralysis caused by Clostridium botulinum neurotoxins (BoNT). BoNTs, defined in seven diff erent antigenic types (A to G), proteolyze SNAREs (synaptosomal-associated protein/SNAP-25 and synaptobrevin) responsible for acetylcholine release in peripheral cholinergic neurons, and thus cause fl accid paralysis and death. Currently, mouse experiments are considered the reference method for definitive diagnosis. However, new diagnostic methods that are fast and accurate and would not raise ethical issues need to be developed. Therefore, using antibodies specific to the toxoid forms of BoNTs, the presence of BoNT-C and/or BoNT-D was investigated by immunohistochemical method (IHC) in the study. The tissues of thirty ruminants (twenty cattle, seven sheep, three goats), which had the clinical and pathological findings of botulism and a herd history of the disease, were used as material. BoNTs were detected with IHC in sixteen of the thirty ruminants as three BoNT-C, eleven BoNT-D, and two BoNT C+D. In the mouse experiments, BoNT was isolated in only three cases (two BoNT-D, one BoNT-C). Additionally, being responsible for the clinical findings of botulism, the interaction of BoNTs with SNAP-25 and synaptobrevin was investigated using IHC. It was determined that BoNT-C specifically reduces the expression of SNAP-25, and BoNT-D reduces the expression of synaptobrevin and partially SNAP-25. It was concluded that additional studies may be valuable to investigate the use of IHC in the diagnosis of botulism.

Ruminantlarda Botulinum Nörotoksin Serotip C ve D’nin Saptanması ve Bunların SNAP-25 ve Sinaptobrevin Ekspresyonları Üzerindeki Etkileri: İmmunohistokimyasal Bir Çalışma

Botulizm insan ve hayvanlarda Clostridium botulinum nörotoksinlerinin (BoNT) neden olduğu, generalize ve ilerleyici paraliz ile karakterize bir hastalıktır. Yedi farklı antijenik tipi (A dan G’ye) tanımlanan BoNT periferik kolinerjik nöronlardaki asetilkolin salınımından sorumlu olan SNARE proteinlerini (SNAP-25 ve sinaptobrevin) proteolize ederek fl asid paralize ve ölüme neden olur. Günümüzde fare deneyleri hastalığın kesin teşhisi için referans yöntem olarak kabul edilmektedir. Ancak, hızlı, güvenilir ve etik problemlere yol açmayan yeni teşhis metotlarının geliştirilmesi gerekmektedir. Yapılan çalışma ile botulismus sürü öyküsü, klinik ve patolojik bulguları bulunan 30 adet ruminanta (20 adet sığır, 7 adet koyun ve 3 adet keçi) ait çeşitli dokular BoNT-C ve BoNT-D yönünden immunohistokimyasal (IHC) yöntemle BoNT’un toksoid formuna spesifik antikorlar kullanılarak incelenmiştir. Bu kapsamda 30 ruminantın 16 (3 BoNT-C, 11 BoNT-D ve 2 BoNT C+D)’sında IHC metodu ile BoNT tespit edildi. Fare deneylerinde ise yalnızca 3 vakada BoNT (2; BoNT-D, 1; BoNT-C) izole edildi. Ayrıca, botulizm klinik bulgularından sorumlu olan SNAP-25 ve sinaptobrevinin BoNT ile olan etkileşimi IHC ile araştırılmış ve BoNT-C’nin ruminantlarda spesifik olarak SNAP-25’i, BoNT-D’nin ise spesifik olarak sinaptobrevini kısmi olarak da SNAP-25’i proteolize ettiği saptanmıştır. Botulizm tanısında IHC kullanımını araştırmak için ek çalışmaların yapılmasının değerli olabileceği sonucuna varıldı.

___

1. Quinn PJ, Markey BK, Leonard FC, Hartigan P, Fanning S, Fitzpatrick E: Veterinary microbiology and microbial disease. 2nd ed. 237-239, John Wiley & Sons, Iowa, USA, 2011.

2. Pirazzini M, Rossetto O, Eleopra R, Montecucco C: Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol Rev, 69 (2): 200-235, 2017. DOI: 10.1124/pr.116.012658

3. Poulain B, Popoff MR: Why are botulinum neurotoxin-producing bacteria so diverse and botulinum neurotoxins so toxic? Toxins, 11 (1): 34, 2019. DOI: 10.3390/toxins11010034

4. Cope RB: Botulinum neurotoxins. In, Gupta RC (Ed): Veterinary Toxicology. $3^{rd}$ ed., 743-757, Elsevier, London, United Kingdom, 2018.

5. Rossetto O, Pirazzini M, Montecucco C: Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat Rev Microbiol, 12 (8): 535-549, 2014. DOI: 10.1038/nrmicro3295

6. Soares MC, Gaspar AO, Brumatti RC, Gomes DC, Neves DA, Alcântara LOB, Leal PV, Lemos RAA: Economic impact of an outbreak of botulism in a cattle feedlot. Pesq Vet Bras, 38 (7): 1365-1370, 2018. DOI: 10.1590/1678-5150-PVB-5643

7. Rossetto O, Pirazzini M, Bolognese P, Rigoni M, Montecucco C: An update on the mechanism of action of tetanus and botulinum neurotoxins. Acta Chim Slov, 58 (4): 702-707, 2011.

8. Poulain B, Lemichez E, Popoff MR: Neuronal selectivity of botulinum neurotoxins. Toxicon, 178, 20-32, 2020. DOI: 10.1016/j.toxicon.2020.02.006

9. Böhnel H, Gessler F: Botulinum toxins-cause of botulism and systemic diseases? Vet Res Commun, 29 (4): 313-345, 2005. DOI: 10.1023/b:ve rc.0000048489.45634.32

10. Popoff MR, Poulain B: Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins, 2 (4): 683-737, 2010. DOI: 10.3390/toxins2040683

11. Popoff MR, Bouvet P: Clostridial toxins. Future Microbiol, 4 (8): 1021- 1064, 2009. DOI: 10.2217/fmb.09.72

12. Raptis A, Torrejon-Escribano B, Gomez de Aranda I, Blasi J: Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat, 30 (4): 201-211, 2005. DOI: 10.1016/j.jchemneu.2005.08.002

13. Mariano V, Nardi A, Gradassi S, De Santis P, Anniballi F, Bilei S, Scholl F, Auricchio B, Bielli C, Culicchi M, Casali De Rosa GL: A severe outbreak of botulism in cattle in Central Italy. Vet Ital, 55 (1): 57-62, 2019. DOI: 10.12834/VetIt.768.3714.2

14. Cai S, Singh BR, Sharma S: Botulism diagnostics: From clinical symptoms to in vitro assays. Crit Rev Microbiol, 33 (2): 109-125, 2007. DOI: 10.1080/10408410701364562

15. Stern D, von Berg L, Skiba M, Dorner MB, Dorner BG: Replacing the mouse bioassay for diagnostics and potency testing of botulinum neurotoxins - progress and challenges. Berl Munch Tierarztl Wochenschr, 131 (9-10): 375-394, 2018. DOI: 10.2376/0005-9366-17110

16. Hobbs RJ, Thomas CA, Halliwell J, Gwenin CD: Rapid detection of botulinum neurotoxins-A review. Toxins, 11 (7): 418, 2019. DOI: 10.3390/ toxins11070418

17. Otter A, Uzal FA: Clostridial diseases in farm animals: 2. Histotoxic and neurotoxic diseases. In Pract, 42 (5): 279-288, 2020. DOI: 10.1136/ inp.m1984

18. Hogg R, Livesey C, Payne J: Diagnosis and implications of botulism. In Pract, 30 (7): 392-397, 2008. DOI: 10.1136/inpract.30.7.392

19. Lindstrom M, Korkeala H: Laboratory diagnostics of botulism. Clin Microbiol Rev, 19 (2): 298-314, 2006. DOI: 10.1128/CMR.19.2.298-314.2006

20. Le Marechal C, Hulin O, Mace S, Chuzeville C, Rouxel S, Poezevara T, Mazuet C, Pozet F, Sellal E, Martin L, Viry A, Rubbens C, Chemaly M: A case report of a botulism outbreak in beef cattle due to the contamination of wheat by a roaming cat carcass: From the suspicion to the management of the outbreak. Animals, 9 (12): 1025, 2019. DOI: 10.3390/ani9121025

21. Moeller RB, Puschner B, Walker RL, Rocke T, Galey FD, Cullor JS, Ardans AA: Determination of the median toxic dose of type C botulinum toxin in lactating dairy cows. J Vet Diagn Invest, 15 (6): 523-526, 2003. DOI: 10.1177/104063870301500603

22. Ryabko AK, Kozyr’ AV, Kolesnikov AV, Khlyntseva AE, Zharnikova IV, Shemyakin IG: Strategies for upgrading analyte detection in immunoPCR studied on identification of type A botulinum neurotoxin. Appl Biochem Microbiol, 52 (1): 110-120, 2016. DOI: 10.1134/s0003683816010117

23. Commission: Bakteriyoloji. In, Diker KS (Ed): Teşhiste Metot Birliği. 98-100, Ministry of Agriculture and Forestry, Ankara, Turkey, 2014.

24. Galey FD, Terra R, Walker R, Adaska J, Etchebarne MA, Puschner B, Fisher E, Whitlock RH, Rocke T, Willoughby D, Tor E: Type C botulism in dairy cattle from feed contaminated with a dead cat. J Vet Diagn Invest, 12 (3): 204-209, 2000. DOI: 10.1177/104063870001200302

25. Myllykoski J, Lindstrom M, Keto-Timonen R, Soderholm H, Jakala J, Kallio H, Sukura A, Korkeala H: Type C bovine botulism outbreak due to carcass contaminated non-acidified silage. Epidemiol Infect, 137 (2): 284-293, 2009. DOI: 10.1017/S0950268808000939

26. Pamukcu AM: Hemorrhagic encephalomyelitis due to botulism in cattle in Turkey. Zentralbl Veterinarmed, 1 (8): 707-722, 1954. DOI: 10.1111/ j.1439-0442.1954.tb00039.x

27. Grate JW, Ozanich Jr RM, Warner MG, Bruckner-Lea CJ, Marks JD: Advances in assays and analytical approaches for botulinum-toxin detection. Trends Analyt Chem, 29 (10): 1137-1156, 2010. DOI: 10.1016/j. trac.2010.07.005

28. Ekong T: Immunological detection of botulinum neurotoxins. Anaerobe, 6 (2): 125-127, 2000. DOI: 10.1006/anae.1999.0322

29. Ashton AC, Crowther JS, Dolly JO: A sensitive and useful radioimmunoassay for neurotoxin and its haemagglutinin complex from Clostridium botulinum. Toxicon, 23 (2): 235-246, 1985. DOI: 10.1016/0041- 0101(85)90146-1

30. Singh AK, Stanker LH, Sharma SK: Botulinum neurotoxin: Where are we with detection technologies? Crit Rev Microbiol, 39 (1): 43-56, 2013. DOI: 10.3109/1040841X.2012.691457

31. Thomas RJ: Detection of Clostridium botulinum types C and D toxin by ELISA. Aust Vet J, 68 (3): 111-113, 1991. DOI: 10.1111/j.1751-0813.1991. tb00769.x

32. Relun A, Dorso L, Douart A, Chartier C, Guatteo R, Mazuet C, Popoff MR, Assie S: A large outbreak of bovine botulism possibly linked to a massive contamination of grass silage by type D/C Clostridium botulinum spores on a farm with dairy and poultry operations. Epidemiol Infect, 145 (16): 3477-3485, 2017. DOI: 10.1017/S0950268817002382

33. Dlabola J, Hashish E, Pauly B, Kubisiak B, Behm I, Heseler R, Schliephake A, Wieler LH, Neubauer H, Seyboldt C: Clostridium botulinum type D/C intoxication in a dairy cow stock in Saxony-Anhalt (Germany)--report on an innovative diagnostic approach. Berl Munch Tierarztl Wochenschr, 129 (3-4): 111-117, 2016.

34. Sharpe AE, Brady CP, Byrne W, Moriarty J, O’Neill P, McLaughlin JG: Major outbreak of suspected botulism in a dairy herd in the Republic of Ireland. Vet Rec, 162 (13): 409-412, 2008. DOI: 10.1136/vr.162.13.409

35. Kroken AR, Blum FC, Zuverink M, Barbieri JT: Entry of botulinum neurotoxin subtypes A1 and A2 into neurons. Infect Immun, 85 (1): e00795-16, 2017. DOI: 10.1128/IAI.00795-16

36. Beard M, Chaddock JA: Clostridium botulinum and associated neurotoxins. In, Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J (Eds): Molecular Medical Microbiology. 2nd ed., 1015-1029, Academic Press, Boston, 2015. DOI: 10.1016/B978-0-12-397169-2.00057-3

37. Poulain B, Popoff MR, Molgó J: How do the botulinum neurotoxins block neurotransmitter release: From botulism to the molecular mechanism of action. Botulinum J, 1 (1): 14-87, 2008. DOI: 10.1504/TBJ.2008.018951

38. Le Maréchal C, Woudstra C, Fach P: Botulism. In, Uzal FA, Prescott JF, Songer JG (Eds): Clostridial Diseases of Animals. 303-330, John Wiley & Sons, Iowa, USA, 2016.

39.Kruger M, Neuhaus J, Herrenthey AG, Gokce MM, Schrodl W, Shehata AA: Chronic botulism in a Saxony dairy farm: Sources, predisposing factors, development of the disease and treatment possibilities. Anaerobe, 28, 220-225, 2014. DOI: 10.1016/j.anaerobe.2014.06.010

40. Fernández-Salas E, Ho H, Garay P, Steward LE, Aoki KR: Is the light chain subcellular localization an important factor in botulinum toxin duration of action? Mov Disord, 19 (Suppl. 8): S23-S34, 2004. DOI: 10.1002/ mds.20006

41. Rodloff AC, Kruger M: Chronic Clostridium botulinum infections in farmers. Anaerobe, 18 (2): 226-228, 2012. DOI: 10.1016/j.anaerobe. 2011.12.011

42. Capogna M, McKinney RA, O’Connor V, Gähwiler BH, Thompson SM: $Ca^{2+}$ or $Sr^{2+}$ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J Neurosci, 17 (19): 7190-7202, 1997. DOI: 10.1523/jneurosci.17-19-07190.1997

43. Kalandakanond S, Coffield JA: Cleavage of intracellular substrates of botulinum toxins A, C, and D in a mammalian target tissue. J Pharmacol Exp Ther, 296 (3): 749-755, 2001.

44. Zhou JY, Wang ZF, Ren XM, Tang MZ, Shi YL: Antagonism of botulinum toxin type A-induced cleavage of SNAP-25 in rat cerebral synaptosome by toosendanin. FEBS Lett, 555 (2): 375-379, 2003. DOI: 10.1016/s0014-5793(03)01291-2

45. Whelchel DD, Brehmer TM, Brooks PM, Darragh N, Coffield JA: Molecular targets of botulinum toxin at the mammalian neuromuscular junction. Mov Disord, 19 (Suppl. 8): S7-S16, 2004. DOI: 10.1002/ mds. 20004
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Neuroendocrine Tumor of the Large Intestine in a Dog

Sebasti an SLODKI, Joanna BOGUCKA

Development of Humoral Immune Response to Thermostable Newcastle Disease Vaccine Strain I-2 in Ring-Necked Pheasant (Phasianus colchicus)

Faisal SIDDIQUE, Rao Zahid ABBAS, Asif IQBAL, Masood RABBANI, Azhar RAFIQUE, Irshad HUSSAIN, Rais AHMED, M. Shahid MAHMOOD, Alireza LOTFI

Ruminantlarda Botulinum Nörotoksin Serotip C ve D’nin Saptanması ve Bunların SNAP-25 ve Sinaptobrevin Ekspresyonları Üzerindeki Etkileri: İmmunohistokimyasal Bir Çalışma

Mustafa ORTATATLI, Funda TERZİ, Mehmet Burak ATEŞ, Mustafa Kemal ÇİFTÇİ, Zeynep ÇELİK

Comparative Efficacy of Synthetic Acaricides Against Tick Infestations in Goats

Ayesha MALIK, Kiran AFSHAN, Abdul RAZZAQ, Zahida FATIMA, Munib HUSSAI, Sabika FIRASAT

OVGP1 Expression in BOEC and Oviduct: An Immunohistochemical and Immunocytochemical Study

Aytül KÜRÜM, Hakan KOCAMIŞ, Siyami KARAHAN, Mustafa TÜRK, Yasin ÖZKABADAYI

Eff ect of Gelatin/Chitosan Coating on Chicken Patty Quality During Frozen Storage: A Response Surface Methodology Application

Aydın ERGE, Ömer EREN

Embriyonik Tavuk Göğüs Kasında miRNA Ekspresyonunun Yüksek Verimli Dizi Analizi

Lei ZHANG, Song REN, Herong LIAO, Jie SUN

BOEC ve Ovidukt’ta OVGP1 Ekspresyonu: İmmunohistokimyasal ve İmmunositokimyasal Çalışm

Aytül KÜRÜM, Hakan KOCAMIŞ, Siyami KARAHAN, Yasin ÖZKABADAYI, Mustafa TÜRK

Akut Stres Altındaki Erkek Ratların Hipokampusundaki Çinko Taşıyıcı Genler 1-4’ün Ekspresyonu Üzerine Çinko Oksit Nanopartiküllerinin Etkileri

Maede NILECHI, Akram EIDI, Hamid GALEHDARI, Mahnaz KESMATI

High-throughput Sequencing Analysis of miRNA Expression in Embryonic Chicken Breast Muscle

Lei ZHANG, Song REN, Herong LIAO, Jie SUN