Eff ects of Zinc Oxide Nanoparticles on the Expression of Zinc Transporter 1-4 Genes in the Hippocampus of Male Rats Under Acute Stress

Zinc transporters (ZnT) and ZIP proteins maintain Zinc homeostasis in the live organisms. On the other hand, the impacts of zinc oxide nanoparticles (ZnO NPs) on the expression of the Znt genes in biological systems were not clear yet. So that in this experimental study we have tried to find the eff ects of ZnO NPs on Znt1-4 genes expression in the hippocampus of male rats under acute stress. Adult male rats were divided into groups of control and treated with 5 or 10 mg/kg of ZnO NPs alone and under acute restraint stress for 90 min. The changes in the expression of the selected genes were monitored using real-time qRT-PCR. The ZnT4 protein expression also was measured by Western blotting. Real-time qRT-PCR expression analysis revealed that the Znt1 gene expression was up-regulated in the stress group, while the expression of the Znt1 and Znt4 genes was significantly up-regulated in the group receiving 10 mg/kg of ZnO NPs. Furthermore, in the ZnO NPs 10 mg/kg group under stress, the Znt2 gene expression was down-regulated, while the Znt4 gene expression was up-regulated. Moreover, the levels of ZnT4 protein were significantly increased after 10 mg/kg of ZnO NPs injection in the stress and normal groups. According to these results ZnO NPs administration can cause changes in the expression of a number of zinc transporter genes under stress conditions and increases the ZnT4 protein level. Therefore, this is a valuable approach for forecast investigation in biomedicine and pharmacogenetics studies.

Akut Stres Altındaki Erkek Ratların Hipokampusundaki Çinko Taşıyıcı Genler 1-4’ün Ekspresyonu Üzerine Çinko Oksit Nanopartiküllerinin Etkileri

Canlı organizmalarda çinko homeostazını çinko taşıyıcılar (ZnT) ve ZIP proteinleri korur. Öte yandan, çinko oksit nanopartiküllerinin (ZnO NP) biyolojik sistemlerde Znt genlerinin ekspresyonu üzerine etkileri henüz tam olarak netlik kazanmamıştır. Bu nedenle, bu deneysel çalışmada, ZnO NP’lerin akut stres altındaki erkek ratların hipokampusundaki Znt1-4 genlerinin ekspresyonu üzerine etkilerini araştırmaya çalıştık. Yetişkin erkek ratlar, kontrol, yalnızca 5 mg/kg ve 10 mg/kg ZnO NP uygulananlar ve 90 dk’lık kısıtlamaya bağlı oluşan stres süresince 5 mg/kg ve 10 mg/kg ZnO NP uygulananlar olmak üzere gruplara ayrıldı. İlgili genlerin ekspresyonlarındaki değişiklikler gerçek zamanlı qRT-PCR kullanılarak izlendi. ZnT4 protein ekspresyonu ayrıca Western Blot yöntemi ile ölçüldü. Gerçek zamanlı qRT-PCR ekspresyon analizi, stres uygulanan grupta Znt1 gen ekspresyonunda bir artışın olduğunu, 10 mg/kg ZnO NP uygulanan grupta ise Znt1 ve Znt4 genlerinin ekspresyonunda önemli ölçüde bir artış olduğunu ortaya çıkardı. Ayrıca, stres altında 10 mg/kg ZnO NP uygulanan grupta, Znt2 gen ekspresyonunda azalma saptanırken, Znt4 gen ekspresyonunda artış belirlendi. Bunun haricinde, 10 mg/kg ZnO NP uygulanan stres ve normal gruplarda uygulamalardan sonra ZnT4 protein seviyeleri önemli ölçüde arttı. Bu sonuçlara göre, ZnO NP uygulaması, stres koşulları altında çinko taşıyıcı bazı genlerin ekspresyonunda değişikliklere neden olabilir ve ZnT4 protein seviyesini artırabilir. Bu nedenle, bu çalışma, biyotıp ve farmakogenetik çalışmaları tasarlamak için değerli bir yaklaşım sunmaktadır.

___

1. Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME: Recent aspects of the efects of zinc on human health. Arch Toxicol, 94 (5): 1443- 1460, 2020. DOI: 10.1007/s00204-020-02702-9

2. Herman JP, Cullinan WE: Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci, 20, 78-84, 1997. DOI: 10.1016/s0166-2236(96)10069-2

3. Gower-Winter SD, Levenson CW: Zinc in the central nervous system: From molecules to behavior. Biofactors, 38 (3): 186-193, 2012. DOI: 10.1002/biof.1012

4. Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M: Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res, 226 (1): 259-264, 2012. DOI: 10.1016/j.bbr.2011.09.026

5. Dou X, Tian X, Zheng Y, Huang J, Shen Z, Li H, Wang X, Mo F, Wang W, Wang S, Shen H: Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav Brain Res, 273, 133-138, 2014. DOI: 10.1016/j.bbr.2014.07.040

6. Prasad AS: Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr, 28, 257-265, 2009. DOI: 10.1080/07315724.2009.10719780

7. Song Y, Elias V, Wong CP, Scrimgeour AG, Ho E: Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc. Biometals, 23 (1): 51-58, 2010. DOI: 10.1007/s10534-009-9266-8

8. Pfaender S, Föhr K, Lutz AK, Putz S, Achberger K, Linta L, Liebau S, Boeckers TM, Grabrucker AM: Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem Cells. Neural Plast, 2016:3760702, 2016. DOI: 10.1155/2016/3760702

9. Bin BH, Seo J, Kim ST: Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res, 2018:9365747, 2018. DOI: 10.1155/2018/9365747

10. Downey AM, Hales BF, Robaire B: Zinc transport differs in rat spermatogenic cell types and is affected by treatment with cyclophosphamide. Biol Reprod, 95 (1): 22, 2016. DOI: 10.1095/biolreprod.116.140558

11. Jobarteh ML, Mcardle HJ, Holtrop G, Sise EA, Prentice AM, Moor SE: mRNA levels of placental iron and zinc transporter genes are upregulated in gambian women with low iron and zinc status. J Nutr, 147, 1401-1409, 2017. DOI: 10.3945/jn.116.244780

12. Cousins RJ, Liuzzi JP, Lichten LA: Mammalian zinc transport, trafficking and signals. J Biol Chem, 281 (34): 24085-24089, 2006. DOI: 10.1074/jbc.R600011200

13. Lee JY, Kim JS, Byun HR, Palmiter RD, Koh JY. Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res, 1418, 12-22, 2011. DOI: 10.1016/j.brainres.2011.08.055

14. McCormick NH, Kelleher SL: ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol, 303 (3): C291-C297, 2012. DOI: 10.1152/ajpcell.00443.2011

15. Bahmani M: A new method for promoting biologic synthesis and reducing the size of titanium dioxide nanoparticles (Tio2 NPs) synthesized by Origanum vulgare. Plant Biotechnol Persa, 1 (1): 10-12, 2019. DOI: 10.29252/pbp.1.1.10

16. Scherzad A, Meyer T, Kleinsasser N, Hackenberg S: Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity. Materials, 10 (12): 1427, 2017. DOI: 10.3390/ma10121427

17. Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T: Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS One, 11 (10): e0164434, 2016. DOI: 10.1371/journal.pone.0164434

18. Kozlowska K: A stress-system model for functional neurological symptoms. J Neurol Sci, 383, 151-152, 2017. DOI: 10.1016/j.jns.2017.10.044

19. Torabi M, Kesmati M, Galehdari H, Varzi HN, Pourreza N: MgO and ZnO nanoparticles anti-nociceptive effect modulated by glutamate level and NMDA receptor expression in the hippocampus of stressed and non-stressed rats. Physiol Behav, 214:112727, 2020. DOI: 10.1016/j. physbeh.2019.112727

20. Portbury SD, Adlard PA: Zinc signal in brain diseases. Int J Mol Sci, 18 (12): 2506, 2017. DOI: 10.3390/ijms18122506

21. Bafaro E, Liu Y, Xu Y, Dempski RE: The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther, 2:17029, 2017. DOI: 10.1038/sigtrans.2017.29

22. Nuttall JR, Oteiza PI: Zinc and the aging brain. Genes Nutr, 9 (1): 379, 2014. DOI: 10.1007/s12263-013-0379-x

23. Olesen RH, Hyde TM, Kleinman JE, Smidt K, Rungby J, Larsen A: Obesity and age-related alterations in the gene expression of zinctransporter proteins in the human brain. Transl Psychiatry, 6:e838, 2016. DOI: 10.1038/tp.2016.83

24. Cieślik K, Sowa-Kucma M, Ossowska G, Legutko B, Wolak M, Opoka W, Nowak G: Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol Rep, 63 (2): 537- 543, 2011. DOI: 10.1016/s1734-1140(11)70520-5

25. Zheng Y, Huang J, Tao L, Shen Z, Li H, Mo F, Wang X, Wang S, Shen H: Corticosterone increases intracellular Zn2+ release in hippocampal HT-22 cells. Neurosci Lett, 588, 172-177, 2015. DOI: 10.1016/j.neulet.2015.01.016

26. Lehvy AI, Horev G, Golan Y, Glaser F, Shammai Y, Assaraf YG: Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discov, 5:144, 2019. DOI: 10.1038/ s41420-019-0224-0

27. Chowanadisai W, Kelleher SL, Lönnerdal B: Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J Nutr, 135 (5): 1002-1007, 2005. DOI: 10.1093/jn/135.5.1002

28. Torabi M, Kesmati M, Pourreza N, Varzi HN, Galehdari H: Neurobehavioral and biochemical modulation following administration of MgO and ZnO nanoparticles in the presence and absence of acute stress. Life Sci, 203, 72-82, 2018. DOI: 10.1016/j.lfs.2018.04.023

29. Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA: The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res, 1200, 89-98, 2008. DOI: 10.1016/j.brainres.2007.11.077

30. Rafało-Ulinska A, Poleszak E, Szopa A, Serefko A, Rogowska M, Sowa I, Wojciak M, Muszynska B, Krakowska A, Gdula-Argasinska J, Kala K, Jasiewicz B, Opoka W, Szewczyk B, Nowak G: Imipramine influences body distribution of supplemental zinc which may enhance antidepressant action. Nutrients, 12 (9): 2529, 2020. DOI: 10.3390/ nu12092529

31. Ma F, Wo Y, Li H, Chang M, Wei J, Zhao S, Sun P: Effect of the source of zinc on the tissue accumulation of zinc and jejunal mucosal zinc transporter expression in holstein dairy calves. Animals, 10 (8): 1246, 2020. DOI: 10.3390/ani10081246

32. Turan B: A brief overview from the physiological and detrimental roles of zinc homeostasis via zinc transporters in the heart. Biol Trace Elem Res, 188 (1): 160-176, 2019. DOI: 10.1007/s12011-018-1464-1

33. McAllister BB, Dyck RH: Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev, 80, 329-350, 2017. DOI: 10.1016/j.neubiorev.2017.06.006

34. McAllister BB, Pochakom A, Fu S, Dyck RH: Effects of social defeat stress and fluoxetine treatment on neurogenesis and behavior in mice that lack zinc transporter 3 (ZnT3) and vesicular zinc. Hippocampus, 30 (6): 623-637, 2020. DOI: 10.1002/hipo.23185

35. Fukada T, Bin BH, Hara T, Takagishi T, Yoshigai E, Lian X: Zinc transporters in physiology and pathophysiology. In, Brewer GJ, Prasad AS (Eds): Essential and Toxic Trace Elements and Vitamins in Human Health, 55-67, Academic Press, 2020.

36. Rafalo A, Zadrozna M, Nowak B, Kotarska K, Wiatrowska K, Pochwat B, Sowa-Kucma M, Misztak P, Nowak G, Szewczyk B: The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression. Prog Neuropsychopharmacol Biol Psychiatry,72, 36-48, 2017. DOI: 10.1016/j.pnpbp.2016.08.009
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Evaluation of the Recombinant EgAgB8/2 Antigen for the Diagnosis of Cystic Echinococcosis in Tibetan Sheep on the Qinghai-Tibetan Plateau, China

Hong DUO, Yong FU, Xiuying SHEN, Zhihong GUO, Xueyong ZHANG, Yijuan MA, Mohamed YOSRI, Tiancong SUN, Youlu CHEN, Gengqiu JIUNAI

Farklı Derecelerde Soğuk Stresinin Domuzlarda FIAF Ekspresyonuna Etkileri

Hong JI, Jingru GUO, Chunyang NIU, Bin XU, Ziyi SHAO, Xu ZHANG, Xuelong ZHAN, Jianfa WANG, Ying LIU, Juxiong LIU

Eff ects of Diff erent Degrees of Cold Stress on FIAF Expression in Pigs

Hong JI, Ziyi SHAO, Ying LIU, Xu ZHANG, Chunyang NIU, Jingru GUO, Bin XU, Xuelong ZHAN, Juxiong LIU, Jianfa WANG

Eff ect of Gelatin/Chitosan Coating on Chicken Patty Quality During Frozen Storage: A Response Surface Methodology Application

Aydın ERGE, Ömer EREN

Jelatin/Kitosan Kaplamanın Dondurarak Muhafaza Edilen Tavuk Köftesi Üzerindeki Etkisi: Bir Yanıt Yüzey Metodu Uygulaması

Aydın ERGE, Ömer EREN

Comparative Efficacy of Synthetic Acaricides Against Tick Infestations in Goats

Ayesha MALIK, Kiran AFSHAN, Abdul RAZZAQ, Zahida FATIMA, Munib HUSSAI, Sabika FIRASAT

Eff ects of Diff erent Zinc Sources on Growth Performance, Serum Biochemical Indexes and Zinc Metabolism of Pregnant Goats and Their Off spring

Mengli ZHENG, Xilin LI, Qiongxian YAN, Chuanshe ZHOU, Zhiliang TAN, Peihua ZHANG

A Case of Ventral Abdominal Hernia Associated with an Ectopic Egg in an Albino Budgerigar and Evaluation by Infrared Thermography

Buse ERSENAL, Serhat ÖZSOY

Ruminantlarda Ensefalitik Listeriozisin Hızlı Tanısı İçin Sitolojik ve İmmunositolojik Yöntemlerin Kullanılabilirliğinin Araştırılması

Mehmet Burak ATEŞ, Özgür ÖZDEMİR, Mustafa ORTATATLI, Fatih HATİPOĞLU, Funda TERZİ, Mustafa Kemal ÇİFTÇİ

Halka Boyunlu Sülün’de (Phasianus colchicus) Termostabil Newcastle Hastalığı Aşı Suşu I-2’ye Karşı Humoral İmmun Yanıtın Gelişimi

Asif IQBAL, Faisal SIDDIQUE, Rais AHMED, Rao Zahid ABBAS, Masood RABBANI, Azhar RAFIQUE, Irshad HUSSAIN, M. Shahid MAHMOOD, Alireza LOTFI