Kalıtımın Epigenetik Boyutunda DNA Metilasyon Desenleri

Epigenetik terimi, genetik olarak özdeş bireylerdeki fenotipik farklılaşmayı açıklamak, genetiğin üzerinde veya genetiğe ek olarak işlev gören mekanizmaları tarif etmek için kullanılmaktadır. DNA metilasyonu, DNA dizilerinde CpG adacıklarındaki metil grubu bağlanmış sitozinleri ifade etmekte olup, enzimatik olarak gerçekleştirilmektedir. Metillenmiş sitozinler gen ifadesinin kontrolünde önemli rol oynamaktadır. Farklı metillenen bölgeler bakımından metilasyon deseninin belirlenmesi bu desenin çevresel etkilerle generasyonlar boyunca ne şekilde kalıtıldığı ile ilgili bilgi vermektedir. Metilasyon deseninin belirlenmesinde en çok kullanılan yöntemler, Metilasyona Özgü Polimeraz Zincir Reaksiyonu ve Bisülfit dizileme ile Southern Blotlama ve Birleştirilmiş bisülfit- kesim enzimi yöntemi prosedürleridir. Son yıllarda metilasyon desenlerinin gen ifadelenmesinde oynadığı kritik rolün anlaşılmasıyla birlikte hayvan ıslahında kullanılan DNA markör verilerinin, nükleotid dizilerine ek olarak, metilasyon deseni bakımından da değerlendirilmesi gerekliliğini işaret etmektedir. Bu çalışmada epigenetik kalıtım - DNA metilasyonu ilişkisi ile metilasyon desenlerinin tespitinde kullanılan yöntemler irdelenmiştir

DNA Methylation Patterns in Epigenetic Context of Inheritance

Epigenetic is the term used to define phenotypic differentiation between genetically identical inviduals, as well as to describe mechanisms which function over or beside genetics. Enzymatically occurring DNA methylation refers to methylated cytosines located in CpG islands of DNA sequences. Methylated cytosines play significant roles in control of gene expression. Identification of methylation patterns in terms of different methylated regions provide information about how this pattern is inherited through generations by environmental effects. Methylation Specific PCR and Bisulphide sequencing, Southern blotting and Combined Bisulphide Restriction Assay are the most applied techniques for identification of methylation patterns. Recently the discovery of the critical role of methylation patterns on gene expression underlines importance of evaluation of methylation patterns, in addition to DNA marker data which are used in animal breeding. This study reviewed the relationship between epigenetic inheritance and DNA methylation, and the methods used in the detection of methylation patterns

___

  • Bartolomei, M.S., Zemel, S., Tilghman, S.M. 1991. Parental imprinting of the mouse H19 gene. Nature 351: 153-155.
  • Coolen, M.W., Statham, W.L., Qu, W., Campbell, M.J., Henders, A.K., Montgomery, G.W., Martin, N.G., Susan, C.J. 2011. Impact of the genome on the epigenome is manifested in DNA methylation patterns of imprinted regions in monozygotic and dizygotic twins. PLoS ONE 6(10): e25590.
  • De Smet, C., Lurquin, C., Bernard, L., Martelange, V., Boon, T. 1999. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol. 7327-7335.
  • Doherty, A.D., Mann, M.R.W., Tremblay, K.D., Bartolomei, M.S., Schultz, R.M. 2000. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62: 1526-1535.
  • Eads, C.A., Laird, P.W. 2002. Combined bisulfite restriction analysis (COBRA). Ed. Mills, K. I., Ramsahoye, B. H. DNA methylation protocols. Humana Press, New Jersey, s. 71-86.
  • Falls, J.G., Pulford, D.J., Wylie, A.A., Jirtle, R.L. 1999. Genomic imprinting: implications for human disease. Am. J. Pathol. 153: 635-647.
  • Frommer, M., Mcdonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molly, P.L., Paul, C.L. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Genetics, Proc. Nati. Acad. Sci. 89: 1827-1831.
  • González-Recio, O. 2011. Epigenetics: a new challenge in the post-genomic era of livestock. Frontiers in Genetic. 2(106): 1-4.
  • Heijmans, B.T., Tobia, E.W., Steinb, A.D., Putterc, H., Blauwd, G.J., Sussere, E.S., Slagbooma, P.E., Lumeye, differences associated with prenatal exposure to famine in humans. PNAS 105: 17046-17049.
  • Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D., Baylin, B.S. 1996. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. 93: 9821-9826.
  • Jurkowski, T.P., Jeltsch, A. 2011. On the evolutionary origin of eukaryotic DNA methyltransferases and DNMT2. PLoS ONE 6(11): e28104.
  • Khatib, H. 2012. Livestock Epigenetics. Wiley- Blackwell, Oxford.
  • Li, W. 2013. High oxygen tension alters DNA methylation levels of bovine in vitro preimplantation embryos. Proceeding of the 1st General Meeting of Epiconcept, 24th - 25th April, Antalya, Turkey, s. 26.
  • Lister, R., Ecker, J.R. 2009. Finding the fifth base: Genome-wide sequencing of cytosine methylation. Genome Res. 19: 959-966.
  • Mann, M.W., Lee, S.S., Doherty, A.D., Verona, R.I., Nolen, L.D., Schultz, R., Bartolomei, M.S. 2004. Selective loss of imprinting in the placenta following preimplantation Development 131: 3727-3735. in culture.
  • Nijland, M.J., Ford, S.P., Nathanielsz, P.W. 2008. Prenatal origins of adult disease. Curr. Opin. Obstet. Gynecol. 20: 132-138.
  • Reik, W., Walter, J. 2001. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2(1): 21- 32.
  • Robbins, K.M., Chen, Z., Wells, K.D., Rivera, R.M. 2012. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J. Biomed. Sci. 19: 95.
  • Robertson, K.D. 2005. DNA methylation and human diseas. Nat. Rev. Genet. 6: 597-610.
  • Turek-Plewa, J., Jagodzınski, P.P. 2005. The role of mammalian regulation of gene expression. Cell. Mol. Biol. Lett. 10: 631-647. in the
  • Young, L.E., Fernandes, K., McEvoy, T.G., Butterwith, C.S., Gutierrez, C.G., Carolan, C., Broadben, J.P, Robinson, J.J., Wilmut, I., Sinclair, K.D. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo cultur. Nat. Genet. 27: 153-154.