Fruit cell vall polysaccharides and their modificaton during ripening

Hücre duvarı genel olarak dokuların yapısı ve bütünlüğünü belirlemeden sorumludurlar. Hücre duvarının modifikasyonunun hidroliz ve transglikoliz enzimleriyle veya ekspansin gibi proteinlerin hidrojen bağlarını yeniden düzenlemek suretiyle yapısal polisakkaritlerin parçalanması sonucu oluştuğu farzedilmektedir. Bitkilerde ana hücre duvarı materyallerinin yaklaşık % 90'ı polisakkaritler olup geri kalanı yapısal proteinlerden oluşmuştur. Temel hücre duvarı polisakkariti sellülozdur. Sellülozik ağ ct-(l-4)-D-glucosyl belkemiği ile ksilozil, galaktozil ve fukozil yan zincirinden meydana gelen ksiloglukanlar içerisine yerleşmiştir. Hücre duvarının üçüncü polisakkariti pektin matriksidir. Meyve hücre duvarları olgunlaşma esnasında önemli yapısal ve biyokimyasal değişiklikler göstermektedir. En yaygın görülen olaylar artan çözünürlük, depolimerizasyon, de-esterifikasyon ve yan nötral şeker zincirlerinin kaybıdır. Organik asitlerin ve inorganik iyonların dağılımı ve apoplastik pH'da da olgunlaşma esnasında önemli değişimler meydana gelmektedir. Olgunlaşma sırasında meyve hücre duvarlarındaki değişimlerin çoğu yaygın olarak bilmen poligalakturonaz, pektin metil esteraz, galaktosidazlar ve ekspansinler tarafından meydana getirilmesine rağmen, sellulazlar ve ksiloglukanazlar da bu değişimlerin meydana getirilmesinde önemli rol oynamaktadırlar. Buna ilaveten, enzimsiz hücre duvarı hidrolizi meyve olgunlaşması esnasında hücre duvarında görülen modifikasyonlara önemli ölçüde katkı sağlamaktadır.

Meyve hücre duvarı polisakkaritleri ve olgunlaşma esnasındaki değişimleri

Cell walls are mainly responsible for the integrity 'and texture of tissues. Cell wall modification is generally assumed to be due to the scission (backbone cleavage) of structural polysaccharides by hydrolases and transglycosylases and or the rearrangement of hydrogen bonds by expansin proteins. In higher plants, about 90 % of primary cell wall material is polysaccharides, the rest being structural proteins. The main cell wall polysaccharide is cellulose. The cellulosic network is embedded in xyloglucans, consisting of a backbone of ct-(l-4)-D-glucosyl with side chains of xylosyl, galactosyl and fucosyl residues. The third polysaccharide fraction of cell walls is the pectin matrix. Fruit cell walls show significant ultrastructural and biochemical changes during ripening. The most common phenomena observed are increased solubility, depolymerization, de-esterification and loss of neutral sugar side chains. The distribution of organic acids and inorganic ions and apoplastic pH also undergo significant changes during fruit ripening. These changes in the cell walls are greatly enhanced in response to wounding. Although most of the alterations in the fruit cell walls are brought about by the widely known hydrolases including polygalacturonase, pectin methyl esterase, galactosidases and expansins, cellulases and xyloglucanases also play a significant role in the changes in cell walls during ripening. Additionally nonenzymic cell wall hydrolysis contributes significantly to the cell wall modifications during fruit ripening.

___

  • Ahn, J.W., Verma, R. and Kim, M. 2006. Depletion of UDP-D-apiose/UDP-D-xylose synthases results in rhamno-galacturonan-II deficiency, cell wall thickening, and cell death in higher plants. Journal of Biological Chemistry, 281 (19), 13708-13716.
  • Almeida, D.P.F. and Huber, D.J. 1999. Apoplastic pH and inorganic ion levels in tomato fruit: A potential means for regulation of cell wall metabolism during ripening. Physiologia Plantarum, 105, 506-512.
  • Arie, R.B., Kislev, N. and Frenkel, C. 1979. Ultrastructural changes in the cell walls of ripening apple and pear fruit. Plant Physiology, 64, 197-202.
  • Barsberg, S., Matousek, P. and Towrie, M. 2006. Lignin radicals in the plant cell wall probed by Kerr-gated resonance Raman spectroscopy. Biophysical Journal, 90 (8), 2978-2986.
  • Ben-Arie, R. and Faust, M. 1980. ATPase in ripening strawberries. Phytochemistry, 19, 1631-1636.
  • Brady, CJ. 1987. Fruit ripening. Annual Review of Plant Physiology, 38, 155-178.
  • Carrington, C.M.S., Greve, L.C. and Labavitch, J.M. 1993. Cell wall metabolism in ripening fruit. VI. Effect of the antisense polygalacturonase gene on cell wall changes accompanying ripening in transgenic tomatoes. Plant Physiology, 103, 429-434.
  • Cheng, G.W. and Huber, DJ. 1997. Alteration in structural polysaccharides during liquefaction of tomato locule tissue. Plant Physiology, 111,447-457.
  • Chin, L.H., Ali, Z.M. and Lazan, H. 1999. Cell wall modifications, degrading enzymes and softening of carambola fruit during ripening. Journal of Experimental Botany, 50 (335), 767-775.
  • Crookes, P.R., and Grierson, D. 1983. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiology 72, 1088-1093.
  • Cutillas-Iturralde, A., Zarra, I. and Lorences, E.P. 1994. Metabolism of cell wall polysaccharides from persimmon fruit. Pectin solubilisation during fruit ripening occurs in apparent abscence of poly­galacturonase activity. Physiologia Planta-rum 89, 369-375.
  • Farrokhi, N., Burton, R.A. and Brownfield, L. 2006. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnolgy Journal, 4(2), 145-167.
  • Fry, S. C. 1998. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemistry Journal, 332,507-515.
  • Fry, S. C. 1995. Annual Review of Plant Physiology and Plant Molecular Biology, 46,497-520.
  • Gross, K.C. and Wallner, S. J. 1979. Degradation of cell wall polysaccharides during tomato fruit ripening. Plant Physiology, 63, 117-120.
  • Halliwell, B. and Gutteridge, J. M. C. 1990. Methods in Enzymology, 186, 1-85.
  • Heyes, J.A., Sealey, D.F. and De Vre, L.A. 1997. Plasma membrane ATPase activity during pepino (Solanum muricatum) ripening. Physiologia Plantarum, 101(3), 570-576.
  • Huber, D.J., Karakurt, Y. and Jeong, J. 2001. Pectin degradation in ripening and wounded fruit. Revista Brasileira de Fisiologia Vegetal, 13(2), 224-241.
  • Huber, DJ. 1990. Acidified phenol alters tomato cell wall pectin solubility and cal­cium content, Phytochemistry, 30, 2523-2527.
  • Huber, DJ. and O'Donoghue, E.M. 1993. Polyuronides in avocado (Persea ameri-cand) and tomato {Lycopersicon esculen-tum) fruity exhibit markedly different patterns of molecular weight downshifts during ripening. Plant Physiology, 102, 473-480.
  • Hwang, Y.S., Huber, DJ. and Albrigo, G. 1990. Comparison of cell wall components in normal and disordered juice vesicles of grapefruit. Journal of American Society for Horticultural Science, 115, 281-287.
  • Jarvis, M.C. 1984. Structure and properties of pectin gels in plant cell walls. Plant Cell -and Environment, 7, 153-164.
  • Jeong, J., Huber, DJ. and Sargent, S.A. 2002. Influence of 1-methylcyclopropene (1-MCP) on ripening and cell wall matrix polysaccharides of avocado (Persea americana) fruit. Postharvest Biology and Technology, 25,241-256.
  • Karakurt, Y., Huber, DJ. 2003. Activities of several membrane and cell-wall hydrolases, and ethylene biosynthetic enzymes and cell-wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biology . and Technology, 28,219-229.
  • Karakurt, Y., Huber, DJ. and Sherman, W.B. 2000. Quality characteristics of melting and non-melting flesh peach genotypes. Journal of the Science of Food and Agriculture, 80(13), 1848-1853.
  • Kim, J., Gross, K.C. and Solomos, T. 1991. Galactose metabolism and ethylene production during development and ripening of tomato {Lycopersicon esculen-tum) fruit, Postharvest Biology and Tech­nology, 1, 67-80.
  • Knee, M, Sargent, J.A. and Osbome, D.J. 1977. Cell wall metabolism in developing strawberry fruits. Journal of Experimental Botany, 28, 377-396.
  • Knoğge, M. 1996. Fungal infection of plants. Plant Cell, 8, 1711-1722.
  • Kuchitsu, K., Kosaka, H., Shiga, T. and Shibuya, N. 1995. Protoplasma, 188, 138-142.
  • Lang, A. and During, H. 1991. Partitioning control by water potential gradient: Evidence for compartmentation break­down in grape berries. Journal of Experi­mental Botany, 42, 1117-1122.
  • Liners, F. and Van Cutsem, P. 1992. Distribution of pectic polysaccharides throughout walls of suspension-cultured carrot cells. An immunocytochemical study. Protoplasma, 170, 10-21.
  • Lurie, S. and Ben-Arie, R. 1983. Characteri­sation of plasmalemma ATPase from apple fruit. Phytochemistry, 36, 11-17.
  • Machlaclan, G. and Brady, C. 1994. Endo-1,4-P-glucanase, xyloglucanase and xyloglu-can endotransglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiology, 105, 965-974.
  • Marraccini, P., Rogers, WJ. and Caillet, V. 2005. Biochemical and molecular charac­terization of alpha-D-galactosidase from coffee beans. Plant Physiology and Bio­chemistry, 43(10-11), 909-920.
  • Medina-Escobar, M., Cardenas, J., Moyano, E., Caballero, J. and Mufioz-Blanco, J. 1997. Cloning, molecular characterization and expression pattern of a strawberry ripe­ning-specific cDNA with sequence homo-logy to pectate lyase from higher plants. Plant Molecular Biology, 34, 867-877.
  • Mitcham, E.J., Gross, K.C. and Ng, T.J. 1989. Tomato fruit cell wall synthesis during development and senescence. In vivo labelling of wall fractions using (14C) sucrose. Plant Physiology, 89,477-481.
  • Nari, J., Noat, G., Diamantidis, G., Woudstra, M. and Ricard, J. 1986. Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 3. Interplay between limited cell-wall autolysis, pectin methyl esterase and electrostatic effects in soybean cell walls. European Journal of Biochemistry, 155, 199-202.
  • O'Donoghue, E.M., Somerfield, S.D., de Vre, L.A. and Heyes, J.A. 1997. Develop­mental and ripening-related effects on the cell wall of pepino (Solanum muricatum)fruit. Journal of Science of Food and Agriculture, 73, 455-463.
  • Olson, P. D. and Varner, J. E. 1993. Plant Journal, 4, 887-892.
  • Percy, A.E., Melton, L.D. and Jameson, P.E. 1997. Xyloglucan and hemicelluloses in the cell wall during apple fruit development and ripening. Plant Science, 125,31-39.
  • Pomper, K.W. and Breen, P.J. 1995. Levels of apoplastic solutes in developing straw­berry fruit. Journal of Experimental Botany, 46, 743-752.
  • Rayle, D.L. and Cleland, R.E. 1992. The acid growth theory of auxin-induced cell elon­gation is alive and well. Plant Physiology, 99, 1271-1274.
  • Redgewell, R.J., Fischer, M., Kendal, E. and MacRae, E.A. 1997. Galactose loss and fruit ripening: high molecular weight arabinogalactans in the pectic polysaccha­rides of fruit cell walls. Planta, 203, 174-181.
  • Redgewell, R.J., Melton, L.D., Brasch, D.J. and Coddington, J.M. 1992. Structures of pectic polysaccharides from the cell walls of kiwifruit. Carbohydrate. Research, 226, 287-302.
  • Rose, J.K.C., Hadfield, K.A., Labavitch, J.M. and Bennet, A.B. 1998. Temporal sequ­ence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiology, 117,345-361.
  • Ruan, Y.L., Patrick, J.W. and Brady, C.J. 1996. The composition of apoplast fluid recove­red from intact developing tomato fruit. Australian Journal of Plant Physiology, 23, 9-13.
  • Rushing, J.W. and Huber, D.J. 1990. Mobility limitations of bound polygalacturonase in isolated cell walls from tomato pericarp tissue. Journal of American Society for Horticultural Science, 115, 97-101.
  • Sakurai, N. and Nevins, D.J. 1997. Relationship between fruit softening and wall polysaccharides in avocado (Persea americana Mill) mesocarp tissues. Plant Cell Physiology, 38(5), 603-610.
  • Sampedro, J. and Cosgrove, D.J. 2005. The expansin superfamily. Genome Biology, 6(12), 242.
  • Smith, D.L., Starrett, D.A. and Gross, K.C. 1998. A gene coding for tomato fruit (3-galactosidase II is expressed during fruit ripening. Cloning, characterization and expression pattern. Plant Physiology, 117, 417-423.
  • Staddler, R., Wolf, K., Hilgarth, C, Tanner, W. and Sauer, N. 1995. Subcellular locali­zation of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a co-induced galactose-H+ symporter. Plant Physiology, 107, 33-41.
  • Taylor, E.J., Gloster, T.M. and Turkenburg, J.P. 2006. Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. Journal of Biological Che­mistry, 281 (16), 10968-10975.
  • Teeri, T. 1997. Crystalline cellulose degrada­tion: new insight into the function of cellobiohydrolases. Trends in Biotechno­logy, 15, 160-167.
  • Thompson, J. E., Smith, R. C. and Fry, S. C. 1997. Biochemistry Journal, 327, 699-708.
  • Tieman, D.M. and Handa, A.K. 1994. Reduction in pectin methylesterase activity modifies tissue integrity and cation levels ( in ripening tomato (Lycopersicon esculen-tum Mill.). Plant Physiology, 106, 429-436.
  • Ugalde, T.D., Jerie, P.H. and Chalmers, DJ. 1988. Intercellular pH of peach and apricot mesocarp. Australian Journal of Plant Physiology, 15, 505-517.
  • Wakabayashi, K. 2000. Changes in cell wall polysaccharides during fruit ripening. Journal of Plant Research, 113, 231-237.