Polietilen filmlerden baklagillere geçen antioksidanların saptanması

Polietilen paketleme, ekmek, bakliyat ve et ürünleri gibi çok çeşitli gıdalarda yaygın olarak kullanılan bir ambalaj malzemesidir. Küçük granül formunda üretilen bu malzemeler kullanım alanlarına bağlı olarak farklı tekniklerle üretilmektedir. Ekstrüzyon, şişirmeli kalıplama ve kalıplama gibi yöntemler bu üretim formlarında en sık kullanılanlardır. Bazı çalışmalar sonucunda, üretim sırasında kullanılan ve “masterbatch” olarak adlandırılan bazı katkı maddelerinin gıda ile temas ettiği ve bu şekilde yiyecek ve içeceklere geçtikleri tespit edilmiştir. Bu çalışmada, 1000 ppm ve 3000 ppm Irganoks 1010 ve Irganoks 1076 içeren polietilen örnekler hazırlandı. Daha sonra, beş farklı baklagil numunesi (pirinç, bulgur, mısır, kuru fasulye ve nohut) iki dairesel polietilen film parçası arasına yerleştirildi. Örnekler 30 gün boyunca farklı iki sıcaklıkta (4 ºC and 25 ºC) depolandı. Migrasyon miktarları GC-MS aracılığıyla belirlendi ve birbirleriyle karşılaştırıldı. Elde edilen sonuçlara göre Irganox 1010’un 4 ºC’de 1000 ppm’lik polietilen numunelerinden gerçekleşen migrasyon miktarları 364-642 ppb, 3000 ppm’lik polietilen numunelerinde gerçekleşen migrasyon miktarları ise 407-682 ppb şeklindedir. Bu koşullarda en yüksek migrasyon 682 ppb ile 30 günlük sürede 3000 ppm’lik polietilenden bulgura doğru iken, en düşük migrasyon ise 364 ppb ile 10 günlük sürede 1000 ppm’lik polietilenden kuru fasulyeye doğru olan migrasyondur. Irganox 1010’un 25 ºC’de 1000 ppm’lik polietilen numunelerinden gerçekleşen geçişler ise 423-827 ppb aralığında olup, 3000 ppm’lik polietilen numunelerinden gerçekleşen migrasyon miktarları ise 512-848 ppb aralığındadır. Bu koşullarda en yüksek migrasyon 848 ppb ile 30 günlük sürede 3000 ppm’lik polietilenden bulgura doğru olan migrasyon iken, en düşük migrasyon ise 423 ppb ile 10 günlük sürede 1000 ppm’lik polietilenden kuru fasulyeye doğru olan migrasyondur.

Determination of antioxidant migration levels from polyethylene films into legumes

Polyethylene packaging is a widely used packaging material in a wide range of foods such asbread, pulses, and meat products. These materials, which are produced in the form of smallgranules, are produced with different techniques depending on their usage area. Methodssuch as extrusion, blow molding and molding are the most frequently used of theseproduction forms. As a result of some studies, it has been determined that some additivesused during the production and called as masterbatch have a contact with food and they passthrough food and beverages in this way. In this study, polyethylene samples containing 1000ppm and 3000 ppm of Irganox 1010 (pentaerythritoltetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) and Irganox 1076 (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) were prepared. Then, five different legume samples (rice, cracked wheat, corn,white beans, and chickpea) were sandwiched between two circular pieces of polyethylenefilms, with the contact layer facing the sample. Samples were stored at two differenttemperatures (4 ºC and 25 ºC) for 30 days. Migration quantities were determined using GCMS and comparative evaluations were made. Migration amounts from polyethylene samplescontaining 1000 ppm Irganox 1010 at 4 °C are between 364-642 ppb, while migration amountsfrom polyethylene samples containing 1000 ppm Irganox 1010 are between 407 and 682 ppb.In these conditions, the highest migration was 682 ppb from 3000 ppm polyethylene tocracked wheat in 30 days, while the lowest migration was 364 ppb from 1000 ppmpolyethylene to white beans in 10 days. Transitions from polyethylene samples containing1000 ppm Irganox 1010 at 25 °C are in the range of 423 - 827 ppb, and the migration amountsfrom polyethylene samples of 3000 ppm are in the range of 512 - 848 ppb. In theseconditions, the highest migration was 848 ppb from 3000 ppm polyethylene to cracked wheatin 30 days, while the lowest migration was 423 ppb from 1000 ppm polyethylene to whitebeans in 10 days.

___

  • Al-Malaika, S. (2004). Perspectives in Stabilization of Polyolefins. Advances in Polymer Science, 169, 121- 150.
  • Beldi, G., Pastorelli, S., Franchini, F., Simoneau, C. (2012). Time and Temperature Dependant Migration Studies of Irganox 1076 from Plastics into Foods and Food Simulants. Food Additives and Contaminants, 29(5), 836-845.
  • Burman, L., Albertsson, A. C., & Hoglund, A. (2005). Solid– Phase Microextraction for Qualitative and Quantitative Determination of Migrated Degradation Products of Antioxidants in an Organic Aqueous Solution. Journal of Chromatography A, 1080, 107- 116.
  • Chang, Y., Kang, K., Park, S. J., Choi, J. C., & Kim, M. (2019). Experimental and Theoretical Study of Polypropylene:Antioxidant Migration with Different Food Simulants and Temperatures. Journal of Food Engineering, 244, 142-149.
  • Coltro, L., Pitta, J. B., Da Costa, P. A., Perez, M. A. F., De Araújo, V. A., & Rodrigues, R. (2014). Migration of Conventional and New Plasticizers from PVC Films into Food Simulants: A Comparative Study. Food Control, 44, 118-129.
  • Dopico - Garcia, M. S., Lopez - Vilarino, J. M., Gonzales - Rodriguez, M. V. (2003). Determination of Antioksidant Migrations Levels from Low Density Polyethylene Films into Food Simulants. Journal of Chromatography A, 1018 (1), 53-62.
  • Dopico - Garcia, M. S., Lopez - Vilarino, J. M., & Gonzalez - Rodriguez, M. V. (2007). Antioxidant Content of and Migration from Commercial Polyethylene, Polypropylene, and Polyvinyl Chloride Packages. Journal of Agricultural and Food Chemistry, 55, 3225- 3231.
  • European (EU) Commission. (2003). A Practical Guide for Users of European Directives. SANCO D3 / LR D. https://www.esac.pt/noronha/manuais/ practical_guide_en_sanco_d3_ lrd_ 0 4%202003. pdf.
  • Galotto, M. J., Torres, A., Guarda, A., Moraga, N., Romero, J. (2011). Experimental and Theoretical Study of LDPE Versus Different Concentrations of Irganox 1076 and Different Thickness. Food Research İnternational, 44, 566-574.
  • Karaca, G., & Taşdemir, Y. (2014). Migration of PAHs in Food Industry Sludge to the Air During Removal by UV and TiO2. Science of the Total Environment, 488- 489, 356-361.
  • Marcato, B., Guerro, S., Vianello, M., & Scalia, S. (2003). Migration of Antioxidant Additives from Various Polyolefinic Plastics into Oleaginous Vehicles. International Journal of Pharmaceutics, 257, 217- 225.
  • McCombie, G., Hotzer, K., Daniel, J., Biedermann, M., Eicher, A., & Grob, K. (2016). Compliance Work for Polyolefins in Food Contact: Results of an Official Control Campaign, Food Control, 59, 793–800.
  • Peacock, A.J. (2000). Handbook of Polyethylene, Marcel Dekker, New York.
  • Reinas, I., Oliveira, J., Pereira, J., Machado, F., & Poças, M. F. (2012). Migration of Two Antioxidants from Packaging into a Solid Food and into Tenax. Food Control, 28, 333-337.
  • US FDA, 2015. Guidance for industry: preparation of premarket submissions for food contact substances: Chemistry recommendations. Available from: http://www.fda.gov/Food/GuidanceRegulation/Guid anceDocumentsRegulatoryInformation/IngredientsA dditivesGRASPackaging/ucm081818.htm.
  • Vera, P., Canellas, E., & Nerin, C. (2018). Identification of Non Volatile Migrant Compounds and NIAS in Polypropylene Films Used as Food Packaging Characterized by UPLC-MS/QTOF. Talanta, 188, 750-762.