Elmada mavi küfe neden olan Penicillium expansum’a karşı borik asitin antifungal etkisi

Bu çalışmada, borik asitin Penicillium expansum’a karşı etkinliği hem in vitro hem de in vivo koşullarda değerlendirilmiştir. In vitro’da, borik asitin %0.125 konsantrasyonu P. expansum’un misel gelişmesini, spor çimlenmesini ve çim tüpü uzunluğunu sırasıyla %68.88, %74.00 ve %85.50 oranında azaltmış, halbuki daha yüksek konsantrasyonlar (%0.25, %0.50, %1.00 ve %2.00)’ı ise tamamen engellemiştir. Ayrıca borik asitin yukarıda belirtilen ilk konsantrasyonu ve sonraki konsantrasyonlarının etkileri arasındaki fark istatistiksel olarak önemli bulunmuştur (P<0.05). Borik asitin EC50, minimum engelleyici konsantrasyon (MIC) ve minimum fungisidal konsantrasyon (MFC) değerleri sırasıyla, 0.09, %0.25 ve >%2 olarak belirlenmiştir. In vivo denemelerde, borik asitin %0.25 konsantrasyonu hariç, diğer tüm konsantrasyonlar (%0.50, %1.00 ve %2.00)’ı hem koruyucu hem de tedavi edici etki göstermişler ve bu konsantrasyonlar mavi küfün hastalık şiddetini patojen ile inokule edilmiş kontrole kıyasla önemli ölçüde azaltmıştır (P<0.05). Bununla birlikte, %2.00 borik asitin hem koruyucu hem de tedavi edici uygulamalarda patojene karşı en etkili konsantrasyon olduğu ve hastalık şiddetini sırasıyla %94.46 ve %91.41 oranında azalttığı gösterilmiştir. Bu sonuçlar, borik asitin elmalarda P. expansum'un neden olduğu mavi küf hastalığının mücadelesi için sentetik fungisitlere bir alternatif olarak kullanılabileceğini göstermektedir.

Antifungal effect of boric acid against Penicillium expansum, the casual agent of blue mold of apple

Efficacy of boric acid against Penicillium expansum was evaluated under both in vitro and in vivo conditions in this study. In in vitro, 0.125% concentration of boric acid reduced mycelial growth, spore germination and germ tube elongation of P. expansum by 68.88%, 74.00% and 85.50% respectively, whereas the higher concentrations (0.25%, 0.50%, 1.00% and 2.00%) of boric acid completely inhibited those of P. expansum. Moreover, the difference among the effects of the above-mentioned first concentration and subsequent concentrations of boric acid was statistically significant (P<0.05). The EC50, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of boric acid were defined as 0.09, 0.25% and >2%, respectively. In in vivo experiments, except for 0.25% boric acid, all the other concentrations (0.50%, 1.00% and 2.00%) exhibited both protective and curative activity against P. expansum, and they significantly reducing the disease severity of blue mold in comparison to pathogen‐inoculated control (P<0.05). However, 2.00% boric acid has been shown to be the most effective concentration against the pathogen in both protective and curative applications, and reduce the disease severity by 94.46% and 91.41%, respectively. These results indicate that the boric acid can be used as an alternative to synthetic fungicides for the control of blue mold disease caused by P. expansum in apples.

___

Agrios, G. N. (2005). Plant pathology. Academic press,.

Akhtar, K. P., Matin, M., Mirza, J. H., Shakir, A. S., & Rafique, M. (1994). Some studies on the post harvest diseases of tomato fruits and their chemical control. Pak. J. Phytopathol, 6, 125-129.

Anonymous (2019a). Bitki koruma ürünleri veri tabanı (BKU). https://bku.tarim.gov.tr. (Erişim tarihi: 15 Ocak 2019).

Anonymous (2019b). https://www.enerji.gov.tr/tr-TR/Sayfalar/Bor (Erişim tarihi: 4 Mart 2019).

Cao, B., Li, H., Tian, S., & Qin, G. (2012). Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biology and Technology, 68, 16-21.

Conway, W. S., Leverentz, B., Janisiewicz, W. J., Blodgett, A. B., Saftner, R. A., & Camp, M. J. (2004). Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum. Postharvest Biology and Technology, 34(1), 11-20.

Conway, W. S., Leverentz, B., Janisiewicz, W. J., Saftner, R. A., & Camp, M. J. (2005). Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit. Postharvest Biology and Technology, 36(3), 235-244.

Droby, S., Wisniewski, M., El Ghaouth, A., & Wilson, C. (2003). Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biology and Technology, 27(2), 127-135.

FAO, (2019). http://www.fao.org/faostat/en/#data/QC (Erişim tarihi: 18.01.2019)

Grant, I. R., & Patterson, M. F. (1991). Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork stored under temperature abuse conditions. International journal of food science & technology, 26(5), 521-533.

Janisiewicz, W. J. (1998). Biocontrol of postharvest diseases of temperate fruits. Plant-microbe interactions and biological control, 171-198.

Karabulut, O. A., Arslan, U., İlhan, K., & Kuruoğlu, G. (2005). Integrated control of postharvest diseases of sweet cherry with yeast antagonists and sodium bicarbonate applications within a hydrocooler. Postharvest biology and technology, 37(2), 135-141.

Li, Y., Yang, Z., Bi, Y., Zhang, J., & Wang, D. (2012). Antifungal effect of borates against Fusarium sulphureum on potato tubers and its possible mechanisms of action. Postharvest biology and technology, 74, 55-61.

Mari, M., Leoni, O., Iori, R., & Cembali, T. (2002). Antifungal vapour‐phase activity of allyl‐isothiocyanate against Penicillium expansum on pears. Plant pathology, 51(2), 231-236.

Mecteau, M. R., Joseph, A. R. U. L., & Tweddell, R. J. (2002). Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research, 106(6), 688-696.

Nunes, C., Usall, J., Teixidó, N., Eribe, X. O. D., & Viñas, I. (2001). Control of post‐harvest decay of apples by pre‐harvest and post‐harvest application of ammonium molybdate. Pest Management Science: formerly Pesticide Science, 57(12), 1093-1099.

Palou, L., Marcilla, A., Rojas-Argudo, C., Alonso, M., Jacas, J. A., & del Río, M. Á. (2007). Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest biology and technology, 46(3), 252-261.

Qin, G., Tian, S., Chan, Z., & Li, B. (2007). Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomics approach. Molecular & Cellular Proteomics, 6(3), 425-438.

Qin, G., Zong, Y., Chen, Q., Hua, D., & Tian, S. (2010). Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International Journal of Food Microbiology, 138(1-2), 145-150.

Rolshausen, P. E., & Gubler, W. D. (2005). Use of boron for the control of Eutypa dieback of grapevines. Plant Disease, 89(7), 734-738.

Shi, X., Li, B., Qin, G., & Tian, S. (2012). Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biology and Technology, 67, 138-143.

Snowdon, A. L. (1990). A colour atlas of post-harvest diseases and disorders of fruits and vegetables. Volume 1: General introduction and fruits. Wolfe Scientific Ltd.

Temur, C., & Tiryaki, O. (2012). Combination of Irradiation and Sodium Carbonate to Control Postharvest Penicillium Decay of Apples. The Journal of Turkish Phytopathology, 42(1-2-3), 47-56.

Thomidis, T., & Exadaktylou, E. (2010). Effect of boron on the development of brown rot (Monilinia laxa) on peaches. Crop protection, 29(6), 572-576.

Thompson, D. P. (1989). Fungitoxic activity of essential oil components on food storage fungi. Mycologia, 81(1), 151-153.

Tripathi, P., Dubey, N. K., Banerji, R., & Chansouria, J. P. N. (2004). Evaluation of some essential oils as botanical fungitoxicants in management of post-harvest rotting of citrus fruits. World Journal of Microbiology and Biotechnology, 20(3), 317-321.

TUİK, (2019). Türkiye İstatistik Kurumu (TÜİK). https://tuik.gov.tr (Erişim tarihi: 27.04.2019).

Türkkan, M., & Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen, 67(2), 83-94.

Türkkan, M., Özcan, M., & Erper, İ. (2017). Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the casual agent of grey mould of kiwifruit. Akademik Ziraat Dergisi, 6(2), 107-114.

Wisniewski, M. E., Droby, S., El-Ghaouth, A., & Wilson, C. L. (1998). The use of food additives to control postharvest decay and enhance biocontrol activity of yeast antagonists. In Proc Internat Congress Plant Pathol, August (pp. 9-16).

Xuan, H., Streif, A., Römheld, V., & Bangerth, F. (2005). Application of boron with calcium affects respiration and ATP/ADP ratio in ‘Conference’pears during controlled atmosphere storage. The Journal of Horticultural Science and Biotechnology, 80(5), 633-637.

Zhang, J., & Timmer, L. W. (2007). Preharvest application of fungicides for postharvest disease control on early season tangerine hybrids in Florida. Crop Protection, 26(7), 886-893.

___

APA Yıldırım, E. , Karatoprak, K. , Erper, İ. & Türkkan, M. (2020). Elmada mavi küfe neden olan Penicillium expansum’a karşı borik asitin antifungal etkisi . Harran Tarım ve Gıda Bilimleri Dergisi , 24 (1) , 64-72 . DOI: 10.29050/harranziraat.624445
Harran Tarım ve Gıda Bilimleri Dergisi
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Harran Üniversitesi

6.3b270