Understanding of Acid-Base Concept by Using Conceptual Change Approach

Bu çalışmanın amacı kavramsal değişim metinleri ile birlikte kullanılan benzeştirmelerin (analojiler) 10. sınıf öğrencilerinin asit ve bazlar hakkındaki bilgilerini ne şekilde etkilediğini araştırmaktadır. Kavramsal değişim yaklaşımı sadece eski yanlış bilgilerin değişmesi değil, öğrenilen bilgilerin uygun durumlarla da bağdaştırılması olduğu için öğretim ve kavramsal değişim metinleri buna göre hazırlanmış ve öğrencilerin analojik düşünme becerisinin geliştirilmesine önem verilmiştir. Çalışmanın sonuçlarından elde edilen bilgiler kavramsal değişim yaklaşımı baz alınarak deney grubunda uygulanan öğretim yönteminin, kontrol grubu öğrencilerine uygulanan geleneksel öğretim yöntemine göre öğrencilerin performasını arttırmada daha etkili olduğunu göstermektedir. Öğretim sırasında analojik düşünme becerisinin geliştirilmesine ve kavramsal değişim metni kullanmaya önem verilmesi asitler ve bazlar konusunda olduğu gibi öğrencilerin yanlış anladıkları durumları doğru anlamalarında etkili bir yöntem olabilir.

Kavramsal Değişim Metodu Kullanarak Asit-Baz Konusunun Anlaşılması

This study explores changes of the tenth-grade students' conceptions about acids and bases by using conceptual change text oriented instruction accompanied with analogies. Since conceptual change is viewed not only as a process of replacement of old concepts but also a process of learning to relate ideas to appropriate contexts, the instruction and conceptual change text were designed to convince the students that some situations which they understand are actually analogous to other situations which they misunderstand. The results of the study showed that students in the experimental group taking conceptual change oriented instruction performed much better than the students in the control group taking traditional instruction. Thus, one could deduce that establishing analogical thinking during the course of instruction together with a conceptual change text could be a powerful tool for generating an understanding of unknown and misunderstood situations as in the case of acids and bases concept.

___

  • Abd-El-Kahlick, F. & Akerson V. (2004). Learning as conceptual change: Factors mediating the development of preservice elementary teachers' views of nature of science. Science Education, 88(5), 785-810.
  • Andre, T. & Chambers, S. (1997). Gender, prior knowledge, interest and experience in electricity and conceptual change text manuplations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107-123.
  • Banerjee, A. C. (1991). Spontaneity, reversibility and equilibrium. Proceedings of the Eleventh International Conference on Chemical Education. University of York, U.K.
  • Bradley, J. D. and Mosimege, M. D. (1998). Misconceptions in acids & bases: A comparative study of student teachers with different chemistry backgrounds. South African Journal of Chemistry, 51, 137-155.
  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
  • Cros, P. and Maurin, M. (1986). Conceptions of first year university students about the constitution of matter and notations of acids and bases. European Journal of Science Education, 8, 305-313.
  • Garnett, P. (1995). Students' alternative conceptions in chemistry: A review of research and implication for teaching and learning. Science Education, 25, 69-95.
  • Griffiths, A., (1994). A critical analysis of research on students' chemistry misconceptions. Problem solving and misconceptions in chemistry and physics. The international council of associations for science education publications, 70-99.
  • Hesse, J. and Anderson, C. (1992). Students’ conception of chemical change. Journal of Research in Science Teaching, 29(3), 277-299.
  • Hynd, C. R., Alvermann, D. E. & Qian, G. (1994). Preservice elementary school teachers' conceptual change about projectile motion: Refutation text, demonstration, affective factors, and relevance. Science Education, 81, 1.
  • Liu, X. (2004). Using concept mapping for assessing and promoting relational conceptual change in science. Science Education, 88, 373-396.
  • Mikkila, M. (2001). Improving conceptual change concerning photosynthesis through text design. Learning and Instruction, 11(3), 241-257.
  • Novick, S. and Mannis, J. (1976). A study of students’ perception of the mole concept. Journal of Chemistry Education, 53(9), 720-722.
  • Novick, S. and Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of matter: An interview study. Science Education, 62, 187-196.
  • Posner, G. J., Strike, K. A., Hewson, P. W. and Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
  • Ross, B. and Munby, H. (1991). Concept mapping and misconceptions: A study of high school students’ understanding of acids & bases. International Journal of Science Education, 13, 11-24.
  • Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Science Teaching, 28, 305-313.
  • Wang, T. and Andre, T. (1991). Conceptual change text versus traditional text and questions versus no questions in learning about electricity. Contemporary Educational Psychology, 16, 103 - 116.
  • Weaver, G. C. (1998). Strategies in K-12 Science Instruction to Promote Conceptual Change, Science Education, 82, 455.
  • Wheeler, A. E. and Kass, H. (1978). Student misconceptions in chemical equilibrium. Science Education, 62, 223-232.
  • Yang, E., Greenbowe J. and Andre T. (2004). The effective use of an interactive software program to reduce students’ misconceptions about batteries. Journal of Chemistry Education, 81(4), 587-597.
  • Yip, D. (2004). Questioning skills for conceptual change in science instruction. Journal of Biology Education, 38(2), 76-83.