Bağlam Temelli Fizik Çalışmaları: Literatürdeki Çalışmaların İçerik Analizi

Bağlam temelli yaklaşım öğrencide içinde yaşadığı dünya ile ilgili merak ve heyecan uyandırmayı ve bunun devamlı olmasını amaçlar. Öğrenciler seçilen bağlamlar sayesinde, bilme gereksiniminin temel alındığı bir ortamda sadece yaparak yaşayarak öğrenmez, aynı zamanda fizik dersine olan ilgi ve tutumları da olumlu yönde etkilenmiş olur. Bu çalışmanın amacı, veri tabanlarından erişilen, fizik alanında yapılmış olan bağlam temelli çalışmaların daha önceden oluşturulan bir matris yardımıyla içerik analizinin yapılmasıdır. Araştırmaya 32 çalışma dâhil edilmiş olup, bunlar gerekçe, amaç, yöntem, bulgu, sonuç ve önerilerine göre içerik açısından değerlendirilmiştir. Yapılan derinlemesine analiz sonucunda, çalışmaların büyük çoğunluğu öğrenciler için ilginç olabilecek bağlamlar yaratmak ve anlamlı öğrenmeyi sağlamak için gerçek yaşama dayalı senaryolar oluşturmak gerekçesiyle yapılmıştır. Bu araştırma, yaklaşımın eksik noktalarını göstererek gelecek çalışmalar için yapılan önerileri de vurgulamaktadır. Ayrıca fizik alanında yapılmış olan bağlam temelli çalışmaları bir araya getirmesi bakımından diğer araştırmacılar için de faydalı olacağı düşünülmektedir

Context-Based Physics Studies: A Thematic Review of the Literature

Context-based approach aims to develop and sustain a sense of wonder and curiosity in young people about the natural world. Students are required to induce meanings by using contexts, thus justifying a “need-toknow” approach to content. Thus, their interest and attitudes towards physics have been increased. The purpose of this paper is to evaluate context-based physics studies accessed in databases by using a previously constructed matrix. Thirty-two context-based physics studies are included in the study and reviewed thematically in accordance with the matrix which examines the papers in terms of their needs, aims, methodologies, findings, general knowledge claims and implications. According to in depth analysis, studies are mostly done in a need to create recognizable contexts that can be interesting for the students and to provide for a real-life scenarios basis for meaningful learning. This review will emphasize the missing parts of the approach, implications and suggestions for future studies. And also, it is thought that this review paper could be helpful for researchers in terms of gathering the context-based physics researches together

___

  • Akpınar, M. & Tan, M. (2011, April). Context-based multiple choice tests for measuring students’ achievement. Paper presented at the 2nd International Conference on New Trends in Education and Their Implications, Antalya, Turkey.
  • Ayvacı, H. Ş. (2010). Fizik öğretmenlerinin bağlam temelli yaklaşım hakkındaki görüşleri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 15, 42-51.
  • Balta, N. & Eryılmaz, A. (2011). Turkish new high school physics curriculum: teachers' views and needs. Eurasian J. Phys. Chem. Educ., Jan (Special Issue), 72-88.
  • Basir, M. A., Alinaghizadeh, M. R. & Mohammedpour, H. (2008). A suggestion for improving students’ abilities to deal with daily real-life problems. Physics Education, 43(4), 407-411.
  • Bennett, J., Hogarth, S. & Lubben, F. (2003). A systematic review of the effects of context-based and ScienceTechnology-Society (STS) approaches in the teaching of secondary science: Review summary. University of York, UK.
  • Campbell, B. & Lubben, F. (2000). Learning science through contexts: helping pupils make sense of everyday situations. International Journal of Science Education, 22, 239-252.
  • Çalık, M., Ayas, A. & Ebenezer, J. V. (2005). A review of solution chemistry studies: insights into students’ conceptions. Journal of Science Education and Technology, 14(1), 29-50.
  • Değermenci, A. (2009). Bağlam temelli 9.sınıf dalgalar ünitesine yönelik materyal geliştirme, uygulama ve değerlendirme. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon.
  • Demircioğlu, H., Demircioğlu, G. & Çalık, M. (2009). Investigating effectiveness of storylines embedded within context-based approach: a aase for the periodic table. Chemistry Education Research and Practice, 10, 241-249.
  • Duit, R., Mikelskis-Seifert, S. & Wodzinski, C. (2007). Physics in context - a program for improving physics instruction in Germany, Contributions From Science Education Research, 3, 119-130. DOI: 10.1007/978-1- 4020-5032-9_9
  • Enghag, M., Gustafsson, P. & Jonsson, G. (2007). From everyday life experiences to physics understanding occurring in small group work with context rich problems during introductory physics work at university. Res Sci Educ, 37, 449-467.
  • Euler, M. (2003, September). Challenges to physics education, quality development in teacher education and training, Paper presented at the 2nd GIREP seminar, Udine, Italy.
  • George, J. M. & Lubben, F. (2002). Facilitating teachers’ professional growth through their involvement in creating context-based materials in science. International Journal of Educational Development, 22, 659-672.
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957-976.
  • Herr, N., Holzer, M., Martin, M., Esterle, R. & Sparks, C. (1995). Preparing student teachers for alternative assessment in science. Journal of Science Teacher Education, 6(1), 27-32.
  • Jamison, A. & Mejlgaard, N. (2010). Contextualizing nanotechnology education: fostering a hybrid imagination in Aalborg, Denmark, Science as Culture, 19(3), 351-368.
  • Kaltakçı, D. & Eryılmaz, A. (2011). Context-based questions: optics in animal eyes. Physics Education, 46(3), 323- 327.
  • Ketola, R. G. (2011). Science teachers’ perspectives on their experiences in a graduate program in physics education and effects on their practice. PhD Thesis, Montana State University, Bozeman, Montana.
  • Kortland, J. (2010, September). Scientific literacy and context-based science curricula: exploring the didactical friction between context and science knowledge. Paper presented at the GDCP Conference, Potsdam, Germany. Kurnaz, M. A. & Çalık, M. (2009). A thematic review of ‘energy’ teaching studies: focuses, needs, methods, general knowledge claims and implications. Energy Education Science and Technology Part B: Social and Educational Studies,1(1), 1-26.
  • Lavonen, J., Byman, R., Juuti, K., Meisalo, V. & Uitto, A. (2005). Pupil interest in physics: a survey in Finland. Nordina, 2(05), 72-85.
  • Lubben, F., Bennett, J., Hogarth, S. & Robinson, A. (2005). A systematic review of the effects of context-based and Science-Technology-Society (STS) approaches in the teaching of secondary science on boys and girls, and on lower-ability pupils. Research Evidence in Education Library. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.
  • Lye, H., Fry, M., & Hart, C. (2001). What does it mean to teach physics ‘in context’? a first case study. Aust Sci Teach J, 48(1), 16-22.
  • Mikelskis-Seifert, S. & Duit, R. (2009). Various means of enacting a program to develop physics teachers’ beliefs and instructional practice. In M.F. Taşar & G. Çakmakcı (Eds.), Contemporary science education research: preservice and inservice teacher education (pp. 303-311). Ankara, Turkey: Pegem Akademi.
  • Ng, W. & Nguyen, V. T. (2006). Investigating the integration of everyday phenomena and practical work in physics teaching in Vietnamese high schools. International Education Journal, 7(1), 36-50.
  • OECD, (2003). The PISA 2003 Assessment Framework - Mathematics, reading, science and problem solving knowledge and skills. Organisation for Economic Co-operation and Development 2003.
  • Park, J. & Lee, L. (2004). Analysing cognitive or non-cognitive factors involved in the process of physics problemsolving in an everyday context. International Journal of Science Education, 26(13), 1577-1595.
  • Pilot, A. & Bulte, A. M. W. (2006a). Why do you “need to know”? context-based education. International Journal of Science Education, 28(9), 953-956.
  • Rayner, A. (2005). Reflections on context-based science teaching: a case study of physics for students of physiotherapy. UniServe Science Blended Learning Symposium Proceedings, 169-172.
  • Saka, A. Z. (2011). Investigation of student-centered teaching applications of physics student teachers. Eurasian Journal of Physics and Chemistry Education, Jan (Special Issue), 51-58.
  • Stolk, M. J., Bulte, A. M. W., de Jong, O. & Pilot, A. (2009a). Towards a framework for a professional development programme: empowering teachers for context-based chemistry education. Chem. Educ. Res. Pract., 10, 164-175.
  • Taasoobshirazi, G. & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3, 155-167.
  • Tekbıyık, A. (2010). Bağlam temelli yaklaşımla ortaöğretim 9.sınıf enerji ünitesine yönelik 5E modeline uygun ders materyallerinin geliştirilmesi. Doktora Tezi, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon.
  • Tekbıyık, A. & Akdeniz, A. R. (2010). An investigation on the comparison of context based and traditional physics problems. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 4(1), 123- 140.
  • Ültay, E. (2012). Implementing react strategy in a context-based physics class: impulse and momentum example. Energy Education Science and Technology Part B: Social and Educational Studies, 4(1), 233-240.
  • Ültay, N. & Çalık, M. (2012). A thematic review of studies into the effectiveness of context-based chemistry curricula. Journal of Science Education and Technology, 21(6), 686-701.
  • Ünal, S. Çalık, M., Ayas, A. & Coll, R. K. (2006). A review of chemical bonding studies: needs, aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science & Technological Education, 24(2), 141-172.
  • Vignouli, V., Hart, C. & Fry, M. (2001). What does it mean to teach physics ‘in context’? a second case study. Aust Sci Teach J, 48(3), 6-13.
  • Whitelegg, E. & C. Edwards (2001). Beyond the laboratory: learning physics in real life contexts. In R. Duit (ed.), Research in science education: past, present and future. (pp. 337–342). Dordrect, Netherlands, Kluwer Academic Publishers.
  • Whitelegg, E. & Parry, M. (1999). Real-life contexts for learning physics: meanings, issues and practice. Phys Educ, 34, 68-72.
  • Wierstra, R. F. A. (1984). A study on classroom environment and on cognitive and affective outcomes of the PLONcurriculum. Studies in Educational Evaluation 10, 273-282. Wierstra, R. F. A. & Wubbels, T. (1994). Student perception and appraisal of the learning environment: core concepts in the evaluation of the PLON physics curriculum. Studies in Educational Evaluation 20, 437-455.
  • Wilkinson, J. W. (1999a). Teachers' perceptions of the contextual approach to teaching VCE physics. Australian Science Teachers' Journal, 45(2), 58-65.
  • Wilkinson, J. W. (1999b). The contextual approach to teaching physics. Australian Science Teachers Journal, 45(4), 43-50.
  • Yam, H. (2005). What is contextual learning and teaching in physics? Retrieved November 4, 2010 from Contextual Physics in Ocean Park. http://www.phy.cuhk.edu.hk/contextual/approach/tem/brief_e.html
  • Yayla, K. (2010). Elektromanyetik indüksiyon konusuna yönelik bağlam temelli materyal geliştirilmesi ve etkililiğinin araştırılması. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon.
  • Yigit, N. (2010). Developing presentation skills of student teachers through micro-teaching method. Energy Education Science and Technology Part B: Social and Educational Studies, 2, 55-74.