Hiyalüronik Asit (HA) Tayini İçin MIP Temelli QCM Sensörler Geliştirilmesi

Bu çalışmada, hyalüronik asit (HA) tayini için kuvarz kristal mikrobalans (QCM) temelli tanıma sistemleri geliştirilmiştir. Bu amaçla, öncelikle N-metakriloil-1-tirosin (MAT), MAT-D-Glukoronik asit (MAT-D-GA) ve MAT-Cu(II)-D-Glukorkonik asit (MAT-Cu(II)-D-GA) ön-organize monomerleri sentezlenmiş ve karakterize edilmiştir. Ardından, HA biyomakromolekülünün D-glucoronic asit aktif bölgeleri, HA molekülüne seçici bağlanma bölgeleri oluşturmak için QCM sensor yüzeyinde baskılanmıştır. Son adımda, elde edilen sensörlerin bağlanma etkileşimleri, tanımlama ve tayinde tekrar kullanılabilirlikleri incelenmiştir.

Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA)

In this study, quartz crystal microbalance (QCM) based recognition systems have been developed for the determination of hyaluronic acid (HA). For this purpose, firstly; N-methacryloyl-l-tyrosine (MAT), MAT-DGlucuronic acid (MAT-D-GA) and MAT-Cu(II)-D-Glucuronic acid (MAT-Cu(II)-D-GA) pre-organized monomers have been synthesized, and characterized. Then, D-glucuronic acid active sites of HA biomacromolecule have been imprinted on QCM sensor surface to create HA selective binding sites. In the last step, the binding interactions, usabilities in recognition and determination of prepared sensors have been investigated.

___

  • H.A. Akdamar, N.Y. Sarıözlü, A.A. Özcan, A. Ersöz, A. Denizli, R. Say, Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads, Mater. Sci. Eng. C, 29 (2009) 1404–1408.
  • C.L. Gatlin, F. Tureček, T. Vaisar, Gas-phase complexes of amino acids with Cu(II) and diimine ligands. Part I. Aliphatic and aromatic amino acids, J. Mass Spectrom., 30 (1995) 1605–1616.
  • L. Uzun, R. Uzek, S. Şenel, R. Say, A. Denizli, Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporatedmolecularly imprinted fluorescent nanoparticles, Mater. Sci. Eng. C, 33 (2013) 3432-3439.
  • W. Bal, M. Dyba, H. Kozłowski, The impact of the amino-acid sequence on the specificity of copper(II) interactions with peptides having nonco-ordinating side-chains., Acta Biochim. Pol., 44 (1997) 467–476.
  • U. Latif, S. Can, O. Hayden, P. Grillberger, F.L. Dickert, Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors—detection of bioanalytes, Sens. Actuators B Chem., 176 (2013) 825–830.
  • D. Hur, S. Ekti, R. Say, N-acylbenzotriazole mediated synthesis of some methacrylamido amino acids, Lett. Org. Chem., 4 (2007) 585–587.
  • 31. S. Emir Diltemiz, R. Keçili, A. Ersöz, R. Say, Molecular imprinting technology in quartz crystal microbalance (QCM) sensors, Sensors (Basel), 17 (2017) 454-473.
  • G. Sener, E. Ozgur, E. Yılmaz, L. Uzun, R. Say, A. Denizli, Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles, Biosens. Bioelectron., 26 (2010) 815– 821.
  • Ç. Çiçek, F. Yılmaz, E. Özgür, H. Yavuz, A. Denizli, Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection, Chemosensors, 4 (2016) 1-13.
  • D. Croux, A. Weustenraed, P. Pobedinskas, F. Horemans, H. Diliën, K. Haenen, T. Cleij, P. Wagner, R. Thoelen, W. De Ceuninck, Development of multichannel quartz crystal microbalances for MIP-based biosensing, Phys. Status Solidi., 209 (2012) 892–899.
  • M. Karabörk; E. Birlik Özkütük; A. Ersöz; R. Say, Selective Preconcentration of Fe3+ Using IonImprinted Thermosensitive Particles Hacettepe J. Biol. Chem., 38 (2010) 27-39.
  • E. Yilmaz, D. Majidi, E. Ozgur, A. Denizli, Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM, Sens. Actuat. B Chem., 209 (2015) 714–721.
  • S.E. Diltemiz, D. Hür, R. Keçili, A. Ersöz, R. Say, New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIPbased QCM sensors, Analyst, 138 (2013) 1558-1563.
  • E.B. Özkütük, S.E. Diltemiz, E. Özalp, R. Say, A. Ersöz, Ligand exchange based paraoxon imprınted QCM sensor, Mater. Sci. Eng. C, 33 (2013) 938–942.
  • B.B. Prasad, A. Kumar, R. Singh, Molecularly imprinted polymer-based electrochemical sensor using functionalized fullerene as a nanomediator for ultratrace analysis of primaquine, Carbon, 109 (2016) 196-207.
  • S. Hokputsa, K. Jumel, C. Alexander, S.E. Harding, A comparison of molecular mass determination of hyaluronic acid using SEC/MALLS and sedimentation equilibrium, Eur. Biophys. J. Biophys. Lett., 32 (2003), 450-456.
  • M. Kinoshita, H. Shiraishi, C. Muranushi, N. Mitsumori, T. Ando, Y. Oda, K. Kakehi, Determination of molecular mass of acidic polysaccharides by capillary electrophoresis, Biomed. Chromatogr., 16 (2002) 141- 145.
  • M. E. Zebrower, F. J. Kieras, W. T. Brown, Analysis by high-performance liquid chromatography of hyaluronic acid and chondroitin sulfates, Anal. Biochem., 157 (1986) 93-99.
  • A. L. Fluharty, J. A. Glick, N. M. Matusewicz, H. Kihara, High performance liquid chromatography determination of unsaturated disaccharides produced from chondroitin sulfates by chondroitinases, Biochem. Med., 27 (1982) 352-360.
  • L. Wang, H. Zhang, A. Qin, Q. Jin, B.Z. Tang, J. Ji, Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery, Sci. China Chem., 59 (2016) 1609–1615.
  • H. Kim, H. Jeong, S. Han, S. Beack, B.W. Hwang, M. Shin, S.S. Oh, S.K. Hahn, Hyaluronate and its derivatives for customized biomedical applications, Biomaterials, 123 (2017) 155–171.
  • F. Yu, F. Zhang, T. Luan, Z. Zhang, H. Zhang, Rheological studies of hyaluronan solutions based on the scaling law and constitutive models, Polymer (Guildf), 55 (2014) 295–301.
  • C. Iavazzo, S. Athanasiou, E. Pitsouni, M.E. Falagas, Hyaluronic acid: an effective alternative treatment of interstitial cystitis, recurrent urinary tract infections, and hemorrhagic cystitis?, Eur. Urol., 51 (2007) 1534– 1541.
  • J. Hernandez, I.M. Thompson, Diagnosis and treatment of prostate cancer., Med. Clin. North Am., 88 (2004) 267–79.
  • T. Imanari, T. Toida, I. Koshiishi, H. Toyoda, Highperformance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides, J. Chromatogr. A, 720 (1996) 275-293.
  • L. Sherman, J. Sleeman, P. Herrlich, H. Ponta, Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression, Curr. Opin. Cell Biol., 6 (1994) 726–733.
  • T. Luan, Y. Fang, S. Al-Assaf, G.O. Phillips, H. Zhang, Compared molecular characterization of hyaluronan using multiple-detection techniques, Polymer (Guildf), 52 (2011) 5648–5658.
  • M. Karl, The polysaccharide of the vitreous humor, J. Biol. Chem., 107 (1934) 629–634.
  • Z. Cai, H. Zhang, Y. Wei, F. Cong, Hyaluronan-inorganic nanohybrid materials for biomedical applications, Biomacromolecules, 18 (2017) 1677–1696.
  • T. Luan, L. Wu, H. Zhang, Y. Wang, A study on the nature of intermolecular links in the cryotropic weak gels of hyaluronan, Carbohydr. Polym., 87 (2012) 2076–2085.
  • J.R.E. Fraser, T.C. Laurent, U.B.G. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J. Intern. Med., 242 (1997) 27–33.
  • L. Liu, Y. Liu, J. Li, G. Du, J. Chen, Microbial production of hyaluronic acid: current state, challenges, and perspectives, Microb. Cell Fact., 10 (2011) 1-9.
  • H. Yu, G. Stephanopoulos, Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid, Metab. Eng., 10 (2008) 24–32.
  • T. Luan, Y. Fang, S. Al-Assaf, G.O. Phillips, H. Zhang, Compared molecular characterization of hyaluronan using multiple-detection techniques, Polymer, 52 (2011) 5648–5658.
  • K. Kumari, P.H. Weigel, Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis., J. Biol. Chem., 272 (1997) 32539–32546.
  • M.N. Collins, C. Birkinshaw, Hyaluronic acid based scaffolds for tissue engineering—a review, Carbohydr. Polym., 92 (2013) 1262–1279.
  • L. Lapcík, L. Lapcík, S. De Smedt, J. Demeester, P. Chabrecek, Hyaluronan: preparation, structure, properties, and applications, Chem. Rev., 98 (1998) 2663–2684.