Toryum(IV) Baskılı Kriyojel Polimer Kullanılarak Bastnaesit Cevherindeki Toryum(IV)’un Seçici Olarak Ayrılması ve Önderiştirilmesi

Bu çalışmada, Th(IV)-baskılı Polimerler kullanılarak çeşitli lantanid iyonlarının varlığında sulu çözeltilerde ve bastnaesit cevherinde Th(IV) iyonunun seçici olarak ayrılması ve önderiştirilmesi gerçekleştirildi. Bu amaçla, Th(IV), N-metakriloil antipirin (MAAP) ile kompleksleştirildi ve hazırlanan (MAAP)2-Th(IV) kompleks monomer, serbest radikal polimerizasyon yöntemiyle 2-hidroksietil metakrilat (HEMA) kriyojel ile etkileştirilerek pHEMA-(MAAP)2-Th(IV) kriyojel polimeri hazırlandı. Th(IV), 5.0 mol.L-1 HNO3 ile desorbe edildi ve böylece Th(IV) baskılı p-HEMA-(MAAP)2 kriyojel polimeri oluşturuldu. Th(IV) iyonunun Th(IV)-baskılı p-HEMA-(MAAP)2 kriyojel polimere seçici olarak bağlanması işleminde optimum koşulları belirlemek için pH, akış hızı, başlangıç Th(IV) konsantrasyonu gibi bazı parametreler araştırıldı. Belirlenen bu optimum koşullar altında, maksimum bağlanma kapasitesi 48.30 mg.g-1 olarak tespit edildi. Seçicilik çalışmaları da, Th(IV)-baskılı p-HEMA-(MAAP)2 kriyojel polimer kullanılarak Ce(III), La(III) and Eu(III) iyonlarının varlığında gerçekleştirildi. p-HEMA-(MAAP)2 kriyojel polimer, Th(IV) iyonuna karşı yüksek seçicilik gösterdiği bulundu.

Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer

In this study, selective separation and preconcentration of Th(IV) in aqueous solutions and bastnaesite ore in the presence various lanthanide ions by using Th(IV)-imprinted polymer was conducted. For this purpose, Th(IV) was complexed with N-methacryloyl antipyrine (MAAP) and the prepared (MAAP)2-Th(IV) complex monomer was polymerized with 2-hydroxyethyl methacrylate (HEMA) cryogel to prepare pHEMA-(MAAP)2- Th(IV) cryogel polymer by free radical polymerization. Th(IV) was desorbed with 5.0 mol.L-1 HNO3 and thus Th(IV)-imrinted were created onto p-HEMA-(MAAP)2 cryogel polymer. To determine the optimum conditions, in the process of selective binding of Th(IV) ion to Th(IV)-imprinted p-HEMA-(MAAP)2 cryogel polymer, some parameters such as pH, flow rate, initial Th(IV) concentration were investigated. Under the optimum conditions, the maximum binding capacity was obtained as 48.30 mg.g-1. Selectivity studies were also carried out in the presence of Ce(III), La(III) and Eu(III) ions using Th(IV)-imprinted p-HEMA-(MAAP)2 cryogel polymer. It was found that p-HEMA-(MAAP)2 cryogel polymer displayed high selectivity toward Th(IV) ion.

___

  • E. Birlik , S. Büyüktiryaki , A. Ersöz , A. Denizli, R. Say, Selective separation of thorium using ion imprinted chitosan‐phthalate particles via solid phase extraction, Sep. Sci. Tech., 41 (2006) 3109-3121.
  • R. Keçili, R. Say, A. Ersöz, H. Yavuz, A. Denizli, Purification of penicillin acylase through a monolith column containing methacryloyl antipyrine, Sep. Pur. Tech., 55 (2007) 1-7.
  • Z. Baysal, E. Aksoy, İ. Dolak, A. Ersöz, R. Say, Adsorption Behaviours of lysozyme onto polyhydroxyethyl methacrylate cryogels containing methacryloyl antipyrine-Ce(III), Int. J. Poly. Mat. Poly. Biomat., 67 (2018) 199-204.
  • I. Yener, E. Varhan Oral, I. Dolak, S. Ozdemir, R Ziyadanogullari, A new method for preconcentration of Th(IV) and Ce(III) by thermophilic Anoxybacillus flavithermus immobilized on Amberlite XAD-16 resin as a novel biosorbent, Eco. Eng., 103 (2017) 43–49.
  • H. Lianga, Qi. Chen, J. Mab, Y. Huang, X. Shen, Synthesis and characterization of a new ion-imprinted polymer for the selective separation of thorium(IV) ions at high acidity, Royal Soc. of Chem., 7 (2017) 35394-35402.
  • A. Ersöz, R. Say, A. Denizli, Ni(II) ion-imprinted solidphase extraction and preconcentration in aqueous solutions by packed-bed columns, Anal. Chim. Acta, 502 (2004) 91-97.
  • N. Candan, N. Tüzmen, M. Andaç, C.A. Andaç, R. Say, A. Denizli, Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column, Mat. Sci. and Eng. C, 29 (2009) 144-152.
  • M. Andaç, R. Say, A. Denizli, Molecular recognition based cadmium removal from human plasma, J. Chrom. B, 811 (2004) 119-126.
  • B. Gao, J. Meng, Y. Xu, Y. Zhang, Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions, J. Ind. Eng. Chemi., 24 (2015) 351-358.
  • M. Fayazi, M. Ghanei-Motlagh, M.A. Taher, R. GhaneiMotlagh, M.R. Salavati, Synthesis and application of a novel nanostructured ion-imprinted polymer for the preconcentration and determination of thallium(I) ions in water samples, J. Haz. Mat., 309 (2016) 27-36.
  • M. Moussa, V. Pichon, C. Mariet, T. Vercouter, N. Delaunay, Potential of ion imprinted polymers synthesized by trapping approach for selective solid phase extraction of lanthanides, Talanta, 161 (2016) 459-468.
  • M. Mitreva, I. Dakova, I. Karadjova, Iron(II) ion imprinted polymer for Fe(II)/Fe(III) speciation in wine, Microchem. J., 132 (2017) 238-244.
  • 40. M. Roushani, S. Abbasi, H. Khani, R. Sahraei, Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions, Food Chem., 173 (2015) 266-273.
  • M. Monier, D.A. Abdel-Latif, Y.G. Abou El-Reash, Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions, J. Col. Inter. Sci., 469 (2016) 344-354.
  • R. Msaadi, S. Ammar, M.M. Chehimi, Y. Yagci, Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead(II) ions in aqueous media, Eur. Pol. J., 89 (2017) 367-380.
  • M. Monier, D.A. Abdel-Latif, Fabrication of Au(III) ionimprinted polymer based on thiol-modified chitosan, Int. J. Bio. Macro., 105 (2017) 777-787.
  • S.M. Madhappan, K.T. Pradip, S.P. Sung, M. Aneesh, J.C. Hun, S.H. Chang, On-imprinted mesoporous silica hybrids for selective recognition of target metal ions, Micropor. Mesopor. Mat., 180 (2013) 162-171.
  • B.D. Gupta, A.M. Shrivastav, S.P. Usha, Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting, Sensors, 16 (2016) 1381-1413.
  • 34. G. Selvolini, G. Marrazza, MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination, Sensors, 17 (2017) 718-736.
  • S. Vidyasankar, F.H. Arnold, Molecular imprinting: Selective materials for separations, sensors and catalysis, Curr. Opin. Biotech., 6 (1995) 218–224.
  • G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem. Rev., 102 (2002) 1–27.
  • A. Concheiro, Molecularly imprinted polymers for drug delivery, J Chrom. B, 804 (2004) 231-45.
  • F. Puoci, F. Lemma, N. Picci, Stimuli-responsive molecularly imprinted polymers for drug delivery: A review, Curr. Drug Deliv., 5 (2008) 85–96.
  • B. Sellergren, Imprinted chiral stationary phases in high-performance liquid chromatography, J. Chrom. A, 906 (2001) 227–252.
  • M. Lasáková, P. Jandera, Molecularly imprinted polymers and their application in solid phase extraction, J. Sep. Sci., 32 (2009) 788–812
  • S. Wei, B. Mizaikoff, Recent advances on noncovalent molecular imprints for affinity separations, J. Sep. Sci., 30 (2007) 1794–1805.
  • H.J. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media, J. Chrom. B, 866 (2008) 3–13.
  • Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Molecular imprinting of macromolecules for sensor applications, Sensors, 17 (2017) 1-30.
  • G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: Present and future prospective, Int. J. Mol. Sci. 12 (2011) 5908–5945.
  • E. Tamahkar, Adil Denizli, Metal ion coordination interactions for biomolecule recognition: a Review, Hittite J. Sci. and Eng., 2014, 1 21-26.
  • R. Say, E. Birlik, A. Ersöz, F. Yilmaz, T. Gedikbey, A. Denizli, Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim. Acta. 480 (2003) 251–258.
  • K. Balamurugan, K. Gokulakrishnan, T. Prakasam, Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers, Saudi Pharm. J., 20 (2012) 53–61.
  • M. Odabaşı, G. Baydemir, M. Karatas, A. Derazshamshir, Preparation and characterization of metal-chelated poly(HEMA-MAH) monolithic cryogels and their use for DNA adsorption, J. App. Pol. Sci., 116 (2010) 1306–1312.
  • I. Göktürk, R. Üzek, L. Uzun, A. Denizli, Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles, Nanomedicine Biotech., 44 (2016) 1133–1140.
  • M. Gedikli, Ş. Ceylan, M. Erzengin, M. Odabaşı, A novel matrix for hydrophobic interaction chromatography and its application in lysozyme adsorption, Acta Biochim. Pol., 61 (2014) 731–737.
  • İ. Dolak, R. Keçili, D. Hür, A. Ersöz, R. Say, Ion-imprinted polymers for selective recognition of neodymium (III) in environmental samples, Ind. Eng. Chem. Res., 54 (2015) 5328-5335.
  • L. Uzun, R. Uzek, S. Şenel, R. Say, A. Denizli, Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporatedmolecularly imprinted fluorescent nanoparticles, Mat. Sci. Eng. C, 33 (2013) 3432-3439.
  • M.M. Yusoff, N. Rohani, N. Mostapa, M.S. Sarkar, T.K. Biswas, M.L. Rahman, S.E. Arshad, M.S. Sarjadi, A.D. Kulkarni, Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals, J. Rare Earths, 35 (2017) 177-185.
  • N. Bereli, D. Türkmen, K. Köse, A. Denizli, Glutamic acid containing supermacroporous poly(hydroxyethyl methacrylate) cryogel disks for UO2 2+ removal, Mat. Sci. Eng. C, 32 (2012) 2052-2059.
  • S. Buyuktiryaki, R. Say, A. Ersoz, E. Birlik, A. Denizli, Selective preconcentration of thorium in the presence of UO2 2+, Ce3+ and La3+ using Th(IV)-imprinted polymer, Talanta, 67 (2005) 640-645.
  • F. Khalili, G. Al-Banna, Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil e Jordan, J. Enviro. Radio., 146 (2015) 16-26.
  • M.A.A. Aslani, F. Celik, S. Yusan, C.R.K. Aslani, Assessment of the adsorption of thorium onto styrene–divinylbenzene-based resin: Optimization using central composite design and thermodynamic parameters, Pro. Saf. Enviro. Pro., 109 (2017) 192-202.
  • S. Chandramouleeswaran, J. Ramkumar, n-Benzoyl-nphenylhydroxylamine impregnated Amberlite XAD-4 beads for selective removal of thorium, J. Haz. Mat., 280 (2014) 514-523.
  • Y. Chen, Y. Wei , L. He, F. Tang, Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin, J. Chrom. A, 1466 (2016) 37-41.
  • C. Lin, H. Wang, Y. Wang, Z. Cheng, Selective solidphase extraction of trace thorium(IV) using surfacegrafted Th(IV)-imprinted polymers with pyrazole derivative, Talanta, 81 (2010) 30-36.
  • Q. He, X. Chang, Q. Wu, X. Huang, Z. Hu, Y. Zhai, Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV), Anal. Chim. Acta, 605 (2007) 192-197.
  • S.K. Sahu, V. Chakravortty, M.L.P. Reddy, T.R. Ramamohan, The synergistic extraction of thorium(IV) and uranium(VI) with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone and crown ethers, Talanta, 51 (2000) 523–530.
  • I. Dolak, M. Karakaplan, B. Ziyadanoğulları, R. Ziyadanoğulları, Solvent extraction, preconcentration and determination of thorium with monoaza 18-Crown-6 derivative, Bul. Kor. Chem. Soc., 32 (2011) 1564-1568.
  • V.K. Jain, A. Handa, S.S. Sait, P. Shrivastav, Y.K. Agrawal, Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone, Anal. Chim. Acta, 429 (2001) 237–246.
  • B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Recent progress in exploring magnetocaloric materials, Adv. Mater., 21 (2009) 4545–4564.
  • Y.P. Du, Y.W.Zhang, Z.G. Yan, L.D. Sun, C.H. Yan, Highly luminescent self-organized sub-2-nm EuOF nanowires, J. Am. Chem. Soc., 131 (2009) 16364–16365.
  • S.F. Ashley, G.T. Parks, W.J. Nuttall, C. Boxall, R.W. Grimes, Thorium fuel has risks, Nature, 492 (2012) 31–33.