Characterization of Local Trichoderma spp. as Potential Bio-Control Agents, Screening of in vitro Antagonistic Activities and Fungicide Tolerance

Enlightening effects of biocontrol agents as Trichoderma spp. to provide disease control by combating pathogens is an important alternative in agricultural crop production. To that end, 9 species of Hypocrea/ Trichoderma having green ascospores isolated from the soil that tea plants cultivated in are identified by ITS sequences and were found to be close relative of Trichoderma sect. Pachybasium (77%). Ethyl acetate extracts of fungal isolates exhibited the antimicrobial activity against to Vibrio sp, Serratia marcescens, Mycobacterium smegmatis and Bacillus cereus but no antifungal activity was detected. The highest level of inhibitory activity was observed against to M. smegmatis by Trichoderma harzianum ID4A, ID4B and ID6B. In dual culture test, all Trichoderma strains were found to be showing the highest inhibitory activity against to the plant pathogens Botrytis cinerea, Sclerotonia sclerotiorum and Rhizoctonia solani (AG3), but relatively low activity against to the entomopathogen fungi. Volatile metabolites of Trichoderma spp. caused maximum reduction in mycelial growth and sclerotial production. Tested strains showed the highest tolerance to the fungicide Dikozin, whereas the lowest tolerance was against to the Captan regardless of the dosage.

___

  • Y. Elad, Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action, Crop Prot., 19 (2000) 709-714.
  • E. Demirci, E. Dane, C. Eken, In vitro antagonistic activity of fungi isolated from sclerotia on potato tubers against Rhizoctonia solani, Turk. J. Biol., 35 (2011) 457-462.
  • M.A. Rifai, Revision of the genus Trichoderma, Myc. Papers., 116 (19691) 56.
  • N. Sadfi-Zouaoui, S. Châabani, M. Rouaissi, A. Hedi, M. Hajlaoui, A. Boudabous, Analysis of the diversity of Trichoderma spp. in soil horizons using digested ITS regions, Ann. Microbiol., 59 (2009) 459-463.
  • D.M. Geiser, J.C. Frisvad, J.W. Taylor, Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia, (1998) 831-845.
  • W.J. Janisiewicz, L. Korsten, Biological control of postharvest diseases of fruits, Annu. Rev. Phytopathol., 40 (2002) 411-441.
  • M. Verma, KB. Satinder, R.D. Tyagi, Bench-scale fermentation of Trichoderma viride on wastewater sludge: rheology, lytic enzymes and biocontrol activity, Enzyme Microb. Tech., 41 (2007) 764-771.
  • R.M. Saleh, Screening and production of antibacterial compound from Trichoderma spp. against humanpathogenic bacteria, Afr. J. Microbiol. Res., 5 (2011) 1619-1628.
  • J. Locke, J. Marois, G. Papavizas, Biological control of Fusarium wilt of greenhouse-grown chrysanthemums. Plant Dis. 69 (1985) 167-169.
  • L. Kredics, Z. Antal, L. Manczinger, Influence of environmental parameters on Trichoderma strains with biocontrol potential, Food. Technol. Biotechnol., 41 (2003) 37-42.
  • S.A. Karaoglu, S. Ulker, Isolation, identification and seasonal distribution of soilborne fungi in tea growing areas of Iyidere-Ikizdere vicinity (Rize-Turkey), J. Basic. Microbiol., 46 (2006) 208-218.
  • S. Kanematsu, S. Naito, Genetic characterization of rhizoctonia solani ag-2-3 by analyzing restriction fragment length polymorphisms of nuclear ribosomal DNA internal transcribed spacers, Jap. J. Phytopathol., 61 (1995) 18-21.
  • K.J. Martin, P.T. Rygiewicz, Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts, BMC Microbiol., 5 (2005) 28-28.
  • A. Singh, Influence of temperature, pH and media for growth and sporulation of Trichoderma atroviride and its shelf life study in different carrier based formulation, J. Plant. Dis. Sci., 6 (2011) 32-34.
  • Á. Keszler, E. Forgács, L. Kótai, Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatographymass spectrometry, J. Chromatogr. Sci. 38 (2000) 421-424.
  • S. Siddiquee, U.K. Yusuf, K. Hossain, S. Jahan, In vitro studies on the potential Trichoderma harzianum for antagonistic properties against Ganoderma boninense, J. Food Agric. Environ., 7 (2009) 970-976.
  • J.A. Vizcaino, S. Luis, B. Angela, F. Vicente, S. Gutierrez, M.R. Hermosa, E. Monte, Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections, Mycol. Res., 109 (2005) 1397- 1406.
  • G.L. Woods, A.B.E. Barbara, S.C. Patricia, Susceptibility testing of Mycobacteria, nocardiae, and other aerobic actinomycetes; Approved Standard 2nd ed. Wayne (2003) Pennsylvania.
  • M.O. Khan, S. Shahzad, Screening of Trichoderma species for tolerance to fungicides, Pak. J. Bot., 39 (2007) 945-951.
  • V. Santos, V.R. Linardi, Biodegradation of phenol by a filamentous fungi isolated from industrial effluentsidentification and degradation potential, Process. Biochem., 39 (2004) 1001-1006.
  • B.B. Joshi, M.P. Vishwakarma, D. Bahukhandi, R.P. Bhatt, Studies on strains of Trichoderma spp. from high altitude of Garhwal Himalayan region, J. Environ. Biol., 33 (2012) 843-847.
  • C. Kucuk, M. Kivanc, Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features, Turk J. Biol., 27 (2003) 247- 253.
  • F.B.H. Khethr, S. Ammar, D. Saidana, M. Daami, J. Chriaa, K. Liouane, M.A. Mahjoub, A.N. Helal, Z. Mighri, Chemical composition, antibacterial and antifungal activities of Trichoderma spp. growing in Tunisia, Ann. Microbiol., 58 (2008) 303-308.
  • I. Suay, F. Arenal, F.J. Asensio, A. Basilio, M.A. Cabello, M.T. Diez, J.B. Garcia, A.G. Del Val, J. Gorrochategui, Screening of basidiomycetes for antimicrobial activities, Antonie van Leeuwenhoek, 78 (2000) 129- 139.
  • P. Tarus, C.C. Lang’at-Thoruwa, A.W. Wanyonyi, Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum, Bull. Chem. Soc. Ethiop., 17 (2003) 185-190.
  • K. Liouane, D. Saidana, S. Ammar, Chemical composition and antimicrobial activity of methanolic extract of Trichoderma sp. growing wild in Tunisia. J. Essent. Oil Bear. Pl., 12 (2009) 531-540.
  • Z. Antal, L. Manczinger, G. Szakacs, R. Tengerdy, L. Ferenczy, Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species, Mycol. Res., 104 (2000) 545-549.
  • B. Ngo, D. Vu, D. Tran, Analyze antagonist effects of Trichoderma spp. for controlling southern stem rot caused by Sclerotium rolfsii on peanut, Plant Prot., 1 (2006) 12-14.
  • M.A. Lone, M.R. Wani, S.A. Sheikh, Antagonistic potentiality of Trichoderma harzianum against Cladosporium spherospermum, Aspergillus niger and Fusarium oxysporum, J. Biol. Agric. Healthc., 2 (2012) 72-76.
  • G.A. Veena, R. Eswara, R. Bhasakara, Pathogenicity tests and evaluation of efficacy of fungicides against Rhizoctonia bataticola, the causal agent of dry root rot of chickpea, Int. J. Appl. Biol. Pharm., 5 (2014) 283-287.
  • E. Lopez, S. Orduz, Metarhizium anisopliae and Trichoderma viride for control of nests of the fungusgrowing ant, Atta cephalotes, Biol. Control, 27 (2003) 194-200.
  • U. Krauss, E. Hidalgo, C. Arroyo, Interaction between the entomopathogens Beauveria bassiana, Metarhizium anisopliae and Paecilomyces fumosoroseus and the mycoparasites Clonostachys spp., Trichoderma harzianum and Lecanicillium lecanii, Biocontrol. Sci. Techn., 14 (2004) 331-346.
  • P. Ajith, N. Lakshmidevi, Effect of volatile and nonvolatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers, Nat. Sci., 8 (2010) 265-269.
  • N. Stoppacher, B. Kluger, S. Zeilinger, R. Krska, R. Schuhmacher, Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS, J. Microbiol. Methods., 1 (2010) 187-193.
  • F. Mohiddin, M. Khan, Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens, Afr. J. Agric. Res., 8 (2013) 5331-5334.
  • M. Shaik, Non-volatile and volatile metabolites of antagonistic Trichoderma against collar rot pathogen of mentha arvensis, Int. J. Pharm., 2 (2011) 56-58.
  • S.U. Morath, R. Hung, JW. Bennett, Fungal volatile organic compounds: a review with emphasis on their biotechnological potential, Fungal Biol. Rev., 26 (2012) 73-83.
  • H.H. Oruc, Fungicides. InTech: Chapter 17, Fungicides and their effects on animals, (2010) 349-362.
  • K. McLean, J. Hunt, A. Stewart, S. Zydenbos, Compatibility of the biocontrol agent Trichoderma harzianum C52 with selected fungicides, In: Proceedings of The New Zealand Plant Protection Conference, (2001) New Zealand Plant Protection Society.
  • D. Saxena, A. Tewari, D. Rai, The in vitro effect of some commonly used fungicides, insecticides and herbicides for their compatibility with Trichoderma harzianum PBT23, World Appl. Sci. J., 31 (2014) 444- 448.
  • P. Parab, M. Diwakar, U. Sawant, J. Kadam, Exploration of Trichoderma harzianum as antagonist against Fusarium spp. causing damping off and root rot disease and its sensitivity to different fungicides, J. Plant Dis. Sci., 4 (2009) 52-56.