Kızılötesi ve Kızılötesi-Kombinasyon Isıtma Teknolojilerinin Gıda İşleme Uygulamalarında Kullanımı

Kızılötesi ısıtma, özellikle diğer ısıtma mekanizmalarıyla (konvansiyonel ısıtma, mikrodalga ısıtma gibi) bir arada kullanıldığında, zaman ve enerjiden tasarruf sağlayan bir ısıtma teknolojisidir. Gıda endüstrisinde yaygın olarak kurutma, pişirme, kavurma, çözdürme, pastörizasyon ve sterilizasyon gibi ısıl işlemlerde kullanılmaktadır. Kızılötesi ısıtmanın konvansiyonel ısıtmaya göre avantajları, kısa ısıtma süresi, düzgün ısıtma, kalite kayıplarının ve besinsel kayıpların azaltılması, ekipmanların basit ve esnek olması ve önemli oranda enerji tasarrufu sağlaması şeklinde sıralanabilir. Bu derleme makalede, özellikle kızılötesi ve kızılötesi-kombinasyon pişirme teknolojilerinin bazı fırıncılık ürünlerinin (ekmek, kek, kurabiye gibi) fiziksel, fizikokimyasal, mikroyapısal özellikleri ile kaliteleri üzerine olan etkileri yer almaktadır. Ayrıca bu pişirme yöntemi ile konvansiyonel pişirme yönteminin ürün kalitesi üzerine olan etkileri ile ilgili karşılaştırmalı sonuçlara yer verilmiştir.

Use of Infrared and Infrared-Combined Heating Technologies in Food Processing Applications (Turkish with English Abstract)

Infrared heating is a heating technology which provides time and energy saving, especially when combined with other heating modes (such as conventional heating, microwave heating). It is widely used in thermal processes such as drying, baking, roasting, thawing, pasteurization and sterilization in food industry. Some of the advantages of infrared radiation as compared to conventional heating can be enumerated as reduced heating time, uniform heating, reduction of quality and nutritional losses, simple and versatile equipments, and significant energy saving. Within the context of this review, information especially on effects of infrared and infrared-combination baking technology on physical, physicochemical, microstructural properties and quality of some selected products (bread, cake, cookie) and the comparative results concerning the effect of this method and the conventional baking methods on product quality are provided.

___

  • Sepulveda DR, Barbosa-Canovas GV. 2003. Heat transfer in food products. In: Transport phenomena in food processing, Chanes JW, Velez-Ruiz JF, Barbosa
  • Canovas GV (eds), Food Preservation Technology Seri- es, CRC Press, Florida, USA, 42 p. Krishnamurthy K, Khurana SJ, Irudayaraj J, Demirci A. 2008. Infrared Heating in Food Processing: An Over- view. Compr Rev Food Sci Food Saf, 7: 2-13.
  • Ranjan R, Irudayaraj J, Jun S. 2002. Simulation of infra- red drying process. Drying Technol, 20: 363-379.
  • Afzal TM, Abe T. 1998. Diffusion in potato during far infrared radiation drying. J Food Eng, 37: 353-365.
  • Sawai J, Nakai T, Hashimoto A, Shimizu M. 2004. A comparison of the hydrolysis of sweet potato starch with β-amylase and infrared radiation allows prediction of redu- cing sugar production. Int J Food Sci Technol, 39: 967-974.
  • Mongpreneet S, Abe T, Tsurusaki T. 2002. Accelerated drying of welsh onion by far infrared radiation under va- cuum conditions. J Food Eng, 55: 147-156.
  • Sharma GP, Verma RC, Pathare PB. 2005. Thin-layer infrared radiation drying of onion slices. J Food Eng, 67: 366.
  • Nowak D, Levicki PP. 2004. Infrared drying of apple slices. Innov Food Sci Emerg Technol, 5: 353-360.
  • Togrul H. 2005. Simple modeling of infrared drying of fresh apple slices. J Food Eng, 71: 311-323.
  • Tireki S, Sumnu G, Esin A. 2006. Production of bre- adcrumbs by infrared-assisted microwave drying.Eur Food Res Technol, 222: 8-14.
  • Sandu C. 1986. Infrared radiative drying in food engi- neering: a process analysis. Biotechnol Prog, 2: 109-119.
  • Fasina OO, Tyler B, Pickard M. 1997. Infrared hea- ting of legume seeds effect on physical and mechanical properties. ASAE Paper No: 976013.
  • Das I, Das SK, Bal S. 2004. Drying performance of a batch type vibration-aided infrared dryer. J Food Eng, 6: 14.
  • Afzal TM, Abe T, Hikida Y. 1999. Energy and quality aspects of combined FIR-convection drying of barley. J Food Eng, 42: 177-182.
  • Datta AK, Ni H. 2002. Infrared and hot-air-assisted microwave heating of foods for control of surface mois- ture. J Food Eng, 51: 355-364.
  • Eck P, Buck, RG. 1980. Method of browning food in a microwave oven. US Patent 4, 396, 817.
  • Fujii M, Tsuda T. 1987. Microwave heating and infra- red ray heating appliance. US Patent 4, 803, 324.
  • Jung KH, Lee SY. 1992. Microwave ovens with infra- red rays heating units. US Patent 5, 310, 979.
  • Sumnu G, Turabi E, Oztop M. 2005. Drying of car- rots in microwave and halogen lamp–microwave combi- nation oven. LWT, Food Sci Technol, 38: 549-553.
  • Wade P. 1987. Biscuit baking by near-infrared radia- tion. J Food Eng, 6: 165-175.
  • Skjöldebrand C, Andersson C. 1989. A comparison of infrared bread baking and conventional baking. J Mic- row Power Electromagn Energy, 24: 91-101.
  • Martinez-Bustos F, Morales SE, Chang YK, Herrera- Gomez A, Martinez MJL, Banos L, Rodriguez ME, Flo- res MHE. 1999. Effect of infrared baking on wheat flour tortilla characteristics. Cereal Chem, 76: 491-495.
  • Shyu YS, Sung WC, Chang MH, Hwang JY. 2008. Ef- fect of far-infrared oven on the qualities of bakery pro- ducts. J Culinary Sci Technol, 6: 105-118.
  • Keskin SO, Sumnu G, Sahin S. 2004. Bread baking in halogen lamp-microwave combination oven. Food Res Int, 37: 489-495.
  • Sumnu G, Sahin S, Sevimli KM. 2005. Microwave, infrared and infrared-microwave combination baking of cakes. J Food Eng, 71: 150-155.
  • Demirekler P, Sumnu G, Sahin S. 2004. Optimizati- on of bread baking in halogen lamp–microwave combi- nation oven by response surface methodology. Eur Food Res Technol, 219: 341-347.
  • Keskin SO, Sumnu G, Sahin S. 2007. A study on the effects of different gums on dielectric properties and qu- ality of breads baked in infrared-microwave combinati- on oven. Eur Food Res Technol, 224: 329-334.
  • Sakiyan O, Sumnu G, Sahin S, Venkatesh M. 2007.
  • The effect of different formulations on physical proper- ties of cakes baked with microwave and near infrared- microwave combinations. J Microw Power Electromagn Energy, 41: 17-23.    Turabi E, Sumnu, G, Sahin S. 2008. Optimization of baking of rice cakes in infrared microwave combination oven by response surface methodology. Food Bioprocess Technol, 1: 64-73.
  • Keskin SO, Ozturk S, Sahin S, Koksel H, Sumnu G. Halogen lamp-microwave combination baking of cookies. Eur Food Res Technol, 220: 546-551. Keskin SO, Sumnu G, Sahin S. 2004. Usage of enz- ymes in novel baking process. Nahrung, 48: 156-160.
  • Ozkoc SO, Sumnu G, Sahin S, Turabi E. 2009. Investi- gation of physicochemical properties of breads baked in microwave and infrared-microwave combination ovens during storage. Eur Food Res Technol, 228: 883-893.
  • Sumnu G, Datta AK, Sahin S, Keskin, SO, Rakesh V. Transport and related properties of breads baked using various heating modes. J Food Eng, 78: 1382-1387.
  • Datta AK, Sahin S, Sumnu G, Keskin SO. 2007. Po- rous media characterization of breads baked using novel heating modes. J Food Eng, 79: 106-116.
  • Ozkoc SO, Sumnu G, Sahin S. 2009. The effects of gums on macro and micro-structure of breads baked in different ovens. Food Hydrocoll, 23: 2182-2189.
  • Sevimli KM, Sumnu G, Sahin S. 2005. Optimization of halogen lamp–microwave combination baking of ca- kes: a response surface methodology study. Eur Food Res Technol, 221: 61-68.
  • Olsson EEM, Tragardh AC, Ahrne LM. 2005. Ef- fect of near-infrared radiation and jet impingement heat transfer on crust formation of bread. J Food Sci, 70: E484-E491.
  • Kino T. 1999. Application of far-infrared heating in roasting of coffee beans. The Food Ind, 42: 29-38.
  • Takeo, T. 1999. Firing and roasting of gren tea. The Food Ind, 42: 18-24.
  • Kim SY, Jeong SM, Jo SC. 2006. Application of far- infrared radiation in manufacturing of process green tea. J Agric Food Chem, 54: 9943-9947.
  • Uysal N, Sumnu G, Sahin S. 2009. Optimization of microwave–infrared roasting of hazelnut. J Food Eng, 90: 261.
  • Sakai N, Mao W. 2006. Infrared Heating. In: Ther- mal Food Processing: New Technologies and Quality
  • Issues, Da-Wen Sun (ed), CRC Press, Boca Raton, pp. 525. Sakai N, Hanzawa T. 1994. Applications and ad- vances in far-infrared heating in Japan. Trends Food Sci Technol, 5: 357-362.
  • Liu CM, Sakai N, Hanzawa T. 1999. Three dimen- sional analysis of heat transfer during food thawing by far-infrared radiation. Food Sci Technol Res, 5: 294-299.
  • Seyhun N, Ramaswamy H, Sumnu G, Sahin S, Ah- med J. 2009. Comparison and modeling of microwave tempering and infrared assisted microwave tempering of frozen potato puree. J Food Eng, 92: 339-344.
  • Jun S, Irudayaraj J. 2003. A dynamic fungal inacti- vation approach using selective infrared heating. Trans
  • ASAE(Am Soc Agric Eng), 46: 1407-1412.
  • Sawai J, Sagara K, Igarashi H, Hashimoto A, Kokugan T, Shimizu M. 1995. Injury of Escherichia coli in physio- logical phosphate buffered saline induced by far-infrared irradiation. J Chem Eng Japan, 28: 294-299.
  • Hamanaka D, Uchino T, Furuse N, Han W, Tanaka S. Effect of the wavelength of infrared heaters on the inactivation of bacterial spores at various water activiti- es. Int J Food Microbiol, 108: 281-285. Sawai J, Kojima H, Igarashi H, Hashimoto A, Fujisa- wa M, Kokugan T, Shimizu M. 1997. Pasteurization of bacterial spores in liquid medium by far-infrared irradi- ation. J Chem Eng Japan, 30: 170-172.