Gıda Endüstrisinde Nanoteknolojinin Kullanılması ve Güvenlik Sorunu

Nanoteknoloji birçok alandaki uygulamalarından dolayı yüksek bir potansiyele sahip bir alandır. . Nanoteknolojik araştırma ve uygulamalar için yapılan yatırımlar günden güne artmaktadır. Bu artış, aynı zamanda toplumda güvenlik konusunda endişelere de neden olmaktadır. Nanomateryaller (NM) küçük boyutları nedeniyle benzersiz fizikokimyasal özelliklere sahiptir. Nanoteknoloji tıptan çevresel bilimlere kadar birçok alanda uygulanmaktadır Ancak, NM’lerin gıda endüstrisinde kullanılma risk algısı, diğer alanlardan farklıdır. Gıdanın üretilmesinden paketlenip, tüketiciye ulaştırılmasına kadar çeşitli uygulama alanlarında kullanabileceği öngörülmektedir. NM’leri teknolojik olarak avantajlı kılan özellikler aynı zamanda onları insan sağlığı ve çevre için sorun haline de getirmektedir. Nanotoksikoloji bilim alanı toksikolojinin bir alt dalı olarak bu sorunların gerçekleşme olasılığını ortaya çıkarmayı hedeflemektedir. Doğru, güvenilir ve karşılaştırılabilir bir toksisite tayini için NM’lerin karakterizasyonu ve organizmadaki kinetiği hakkında yeterli bilgiye sahip olunmalıdır. NM’lerin toksisite tayininde kullanılan metotların çoğu kimyasal toksikoloji için kullanılan klasik toksisite metotlardır. NM’lerin toksisite tayini için kullanılması yeterli değildir ayrıca sorunlara neden olmaktadır. NM’lerin toksisiteleri in vitro ve hayvan deneyleri ile gösterilmiştir ancak toksisite/güvenliklerini kanıtlamak için yapılan çalışmalarda karşılaşılan sorunlardan dolayı daha fazla çalışmaya ihtiyaç vardır. Şu ana kadar nanoteknoloji için uygulamaya konulmuş bir yönetmelik yoktur. Gelişen yeni teknolojileri değerlendirmek, topluma sunduğu olanaklardan yararlanmalıyız ancak teknolojiyi uygulamadan önce yasalarla insan sağlığı ve çevreyi korumaya yönelik sınırlarını belirlemeliyiz.
Anahtar Kelimeler:

; Nanoteknoloji, gıda, toksisite

Nanotechnology in Food Industry and Safety Issue (Turkish with English Abstract)

Nanotechnology has a high potential for applications in many fields. Investments in nanotechnology research and applications are increasing day by day. This increase leads concerns about safety. Due to the small size, Nanomaterials (NMs) have unique physicochemical properties. Nanotechnology has many applications from medicine to environmental sciences. However, public perception for nanotechnology in food industry is different from the other industries. NMs are expected to be used in different applications in the food industry, from production, packing to the consumer nutrition. The same properties making NMs so advantageous can make them problem to human health and environment. Nanotoxicology as a sub-branch of toxicology aims to reveal the likelihood of these problems. There should be detailed information on the characterization and kinetics of the NMs in the organismfor accurate, reliable and comparable toxicity assessment. Most of the methods used for toxicity assessment are classical toxicity assay used for chemical toxicology. However, while it is not enough to use these assays, they also cause problems. NMs have been shown to produce mutagenicity, cytotoxicity, genotoxicity, immunotoxicity in vitro, in vivo and in the animal experiments. However there is still a need for further studies that conclusively establish their safety/toxicity, due to the many experimental challenges and issues encountered. Up to now, there are no specific regulations on nanotechnology. Although the emerging technologies and their opportunities are desirable to be implemented into daily life, before their applications, regulations should be defined to protect human health and environment.

___

  • Royal Society and Royal Academy of Engineering Report. 2004. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. http://www. nanotec. org. uk/finalReport. htm, (Accessed 27 July 2012).
  • U. S. Environmental Protection Agency (U. S EPA), Ex-ternal Review Draft Nanotechnology white paper, December 2, Washington DC 20460, 2005.
  • Rasdtogi ID. 2012. Nanotechnology: Safety paradigms. J. Toxicol. Environ. Health Sci. 4: 1-12. 4. Risks, Lloyd's Emerging Risks Team Report, Nanotechnology, Recent Developments, Risks and Opportunities, 2007, www. lloyds. com, (Accessed 27 July 2012).
  • Abbas KA, Saleh AM, Mohamed A, MohdAzhan N. 2009. The recent advances in the nanotechnology and its applications in food processing: A review. J Food Agriculture Env. 7: 14-17.
  • Whitesides GM. 2003. "The "right" size in nanobiotechnology," Nature Biotech, 21, 1161-1165. 7. Das M, Saxena N, Dwivedi PD. 2009. Emerging trends of nanoparticles application in food technology: Safety paradigms. Nanotoxicology, 3, 10-18.
  • Sekhon BS. 2010. Food Nanotechnology- Overview, Nanotec. Sci Appl, 3, 1-15.
  • Poncelet D, Picot A, El Mafadi S, Capsula. 2011. Encapsulation: an essential technology for functional food applications, Inn. Food Tech. www. innovationsfood. com (Accessed 27 July 2012). 10. Weiss J, Takhisto P, McClements J. 2006. Functional Materials in Food Nanotechnology. J Food Sci, 71, R107-116.
  • Yılmaz G. Sustainable packaging; role of nanotechnology, Food biobased Research, Jongboom Wageningen UR, NL. http://www. costfa0904. eu/public/files/espoo_(fi/gulden_ yilmaz. pdf (Accessed 27 July 2012).
  • Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP. 2007. Compostability of bioplastic packaging materials: an overview. Macromol Biosci, 7, 255-277.
  • Duncan TV. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci, 363, 1-24.
  • Asadi G, Mousavi M. 2006. Application of Nanotechnology in Food Packaging. IUFoST World Congress 13th World Congress of Food Science & Technology DOI: 10. 1051/IUFoST:20060739, http://dx. doi. org/10. 1051/IUFoST:20060739, (Accessed 27 July 2012).
  • White pigments for flexible packaging inks, Great Solutions with Small Particles, Sachtleben. http://www. chemcam. it/rdis%20rodi%20inks. pdf, (Accessed 27 July 2012).
  • Alfadul SM, Elneshwy AA. 2010. Use of Nanotechnology In Food Processing, Packaging and Safety- Review. African J Food Agr Nutr Dev, 10, 2719-2739.
  • Otles S, Yalcin B. 2008. Intelligent Food Packaging, Log Forum, ISSN 1734-459X, 2008, Vol. 4, Issue 4, No 3. URL: http://www. logforum. net/vol4/issue4/no3.
  • Migration of chemicals from plastic into food, http://www. foodsmart. govt. nz/whats-in-our- food/chemicals-nutrients-additives-toxins/plastic -packaging/ (Accessed 27 July 2012).
  • Chen H, Weiss J, Shadidi F. 2006. Nanotechnology in nutraceuticals and functional foods. Food Technol, 60, 30-36.
  • Tarhan Ö, Gökmen V, Harsa fi. 2010. Nanoteknolojinin gıda bilim ve teknolojisi alanındaki uygulamaları. GIDA 35, 219-225.
  • Dhawan A, Sharma V. 2010. Toxicity assessment of nanomaterials: methods and challenges, Anal Bioanal Chem, 398, 589-605.
  • From presentation entitled "Developing In VitroTools and Models for Understanding Nanotoxicology", Life Science Division, Lawrence Berkeley National Laboratory, Life Science Division. Eriflim tarihi: 27. 07. 2012.
  • Arora S, Rajwade JM, Paknikar KM. 2012. Nanotoxicology and in vitro studies: The need of the hour Toxicol Appl Pharmacol, 258, 151-165. 26. Buzea C, Blandino IIP, Robbi K. 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2, MR17 - MR172.
  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 7, 22.
  • Jones CF, Grainger DW. 2009. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev. 61, 438-456.
  • Petersen EJ, Nelson BC. 2010. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem. 398, 613-650.
  • Zemke-White WL, Clements KD, Harris PJ. 2000. Acid lysis of microalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Biol Ecol, 245, 57-68.
  • Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int, 32, 967–976.
  • Mtijevic E, Ed. 2010. Fine Particles in Medicine and Pharmacy, Potsdam, Newyork, 13699-5184, USA, e-ISBN 978-1-4614-0379-1.
  • Song MF, Li YS, Kasai H, Kawai K. 2012. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr. 50, 211-216.
  • Elsaesser A., Howard CV. 2012. Toxicology of nanoparticles. Advanced Drug Delivery Reviews 64, 129-137.
  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J. 1997. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett, 418, 87-90.
  • Rouabhia M, Mitchell DL, Rhainds M, Claveau J, Drouin R. 2002. A physical sunscreen protects engineered human skin against artificial solar ultraviolet radiation-induced tissue and DNA damage. Photochem Photobiol Sci, 1, 471-477.
  • Ma H, Brennan A, Diamond SA. 2012. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ Toxicol Chem. 2012 Jun 15. doi: 10. 1002/etc. 1916. [Epub ahead of print]
  • Karlsson HL, Gustafsson J, Cronholm P, Möller L. 2009. Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett, 188, 112-118.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113:823-839.
  • Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ. 2009. Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24, 285-293.
  • Lynch I, Dawson KA. 2008. Protein-nanoparticle interactions. NanoToday, 3, 40-47.
  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro- Lago C, Dawson KA. 2007. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci, 134-135, 167-174.
  • Kazimirova A, Magdolenova Z, Barancokova M, Staruchova M, Volkovova K, Dusinska M. 2012. Genotoxicity testing of PLGA-PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutat Res. 2012 Jul 17. [Epub ahead of print]
  • Fischer HC, Chan WC. 2007. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol18, 565–571.
  • Hoet PH, Brüske-Hohlfeld I, Salata OV. 2004. Nanoparticles - known and unknown health risks. J Nanobiotechnology, 2, 12.
  • http://europa. eu. int/comm/environment/ chemicals/reach. htm (Accessed 27 July 2012).
  • Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004, on materials and articles intended to come into contact with food and repealing, Directives 80/590/EEC and 89/109/EEC.
  • http://www. regulations. gov (Accessed 27 July 2012).