Laktik Asit Bakterilerinde Proteomik Çalışmalar

Fermente gıdaların doğal florasında baskın halde bulunan ve tüketiciler tarafından sıklıkla kullanılan laktik asit bakterileri gıda teknolojisi ve sağlık sektörü açısından oldukça önemli bir gruptur. Günümüzde laktik asit bakterilerinin dâhil olduğu proteomik çalışmalar, suşların sistematik protein haritalarının çıkarılması ve özellikle sentezleri çeşitli çevresel şartlar veya stresler tarafından uyarılan proteinlerin belirlenmesi üzerine odaklanmaktadır. Bu yaklaşımlar birbirinin tamamlayıcısı olup bakterilerin gıda endüstrisinde, insan sağlığında ve bakteriyel patojenlere karşı mücadelede kullanımları için yeni anlayışlar sağlamaktadır. Laktik asit bakterilerinin endüstriyel önemi düşünüldüğünde, yakın gelecekte özellikle starter kültür ya da probiyotik olarak kullanılacak suşların incelenmesinde, proteomik yöntemlerin kullanımının genomiks çalışmalar kadar artacağı öngörülmektedir.

Proteomics Studies of Lactic Acid Bacteria (Turkish with English Abstract)

Lactic acid bacteria which are dominant in the natural flora of fermented foods and commonly used by consumers, are a very important group for the food technology and health sector. Nowadays, proteomics studies on lactic acid bacteria strains are focused on systematic mapping of strains and determination of protein synthesis induced by especially various environmental situations or stresses. These approaches are complementary to each other and provide new insights for the use of bacteria in food industry, in human health and in struggle against bacterial pathogens. Considering the industrial importance of lactic acid bacteria, the use of proteomics methods is expected to increase as well as genomic studies in the near future, especially in the study of strains which will be used as a starter culture or probiotic.

___

  • Khalid K. 2011. An overview of lactic acid bac- teria. Int J Biosciences, 1(3): 1-13.
  • Zhu Y, Zhang Y, Li Y. 2009. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol, 83: 597-610.
  • O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. 2012. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int J Food Microbiol, 152: 189-205.
  • Wright PC, Noirel J, Ow SY, Fazeli A. 2012. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogen, 77: 738-765.
  • Smith JC, Figeys D. Proteomics technology in systems biology. 2006. Mol Biosyst, 2: 364-370.
  • Smith R. 2009. Two-Dimensional Electrophoresis: An Overview. In: Two-Dimensional Electrophoresis Protocols, Sheehan D, Tyther R (editors), Humana Press, New York, pp. 3-9.
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. 2007. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem, 389: 1017-1031.
  • Hillenkamp F, Peter-Katalinic J. 2007. MALDI MS: A Practical Guide to Instrumentation. In: Methods and Applications, Hillenkamp F, Peter- Katalinic J (editors), Wiley-Vch, Weinheim, pp. 345.
  • De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P. 2011. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol, 34: 20-29.
  • Kolker E, Higdon R, Hogan JM. 2006. Protein identification and expression analysis using mass spectrometry. Trend Microbiol, 14(5): 229-235.
  • De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P. 2011. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol, 34: 20-29.
  • Rabilloud T, Lelong C. 2011. Two-dimensional gel electrophoresis in proteomics: A tutorial. J Proteomics, 74: 1829-1841.
  • Norbeck AD, Callister SJ, Monroea ME, Jaitly N, Elias DA, Lipton MS, Smith RD. 2006. Proteomic approaches to bacterial differentiation. J Microbiol Meth, 67(3): 473-486.
  • Blackstock P, Weir MP. 1999. Proteomics: quantitative and physical mapping of cellular proteins. Trend Biotechnol, 17: 121-129.
  • Yuan J, Zhu L, Liu X, Li T, Zhang Y, Ying T, Wang B, Wang J, Dong H, Feng E, Li Q, Wang J, Wang H, Wei K, Zhang X, Huang C, Huang P, Huang L, Zeng M, Wang H. 2006. A proteome reference map and proteomics analysis of Bifidobacterium longumNCC2705. Mol Cell Proteomics, 5: 1105-1118.
  • Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Verge MC, Butel MJ. 2010. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longumhuman isolates and Bifidobacterium longum
  • Microbiol, 10: 29-36.
  • Hörmann S, Scheyhing C, Behr J, Pavlovic M, Ehrmann M, Vogel RF. 2006. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451T. Proteomics, 6: 1878-1885.
  • Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R. 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol, 26: 700-711.
  • Maddalo G, Chovanec P, Stenberg-Bruzell F, Nielsen HV, Jensen-Seaman MI, Ilag LL, Kline KA, Daley DO. 2011. A reference map of the membrane proteome of Enterococcus faecalis. Proteomics, 11(19): 3935-3941.
  • NCC270 BMC perspectives. J Chrom, 771: 329-342.
  • Algelis MA, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M. 2004. Heat Shock Response in Lactobacillus plantarum. Appl Environ Microbiol, 70(3): 1336-1346.
  • Ingmer H, Vogensen FV, Hammer K, Kilstrup M. 1999. Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. J Bacteriol, 181: 2075-2081.
  • Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gassseri. Proteomics, 8: 1029-1041.
  • Di Cagno R, De Angelis M, Limitone A, Fox PF, Gobbetti M. 2006. Response of Lactobacillus helveticusPR4 to heat stress during propagation in cheese whey with a gradient of decreasing temperatures. Appl Environ Microbiol, 72 (7): 4503-4514.
  • Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. 2002. Stress responses in lactic acid bacteria. Anton Leeuw, 82: 187-216.
  • Phadtare S, Yamanata K, Inouye M. 2000. Bacterial Stress Response. In: Bacterial Stress Response, Stortz G, Hengge-Aronis R (editors), ASM Press, Washington DC, pp. 33.
  • Wouters J, Rombouts F M, De Vos WM, Kuipers OP, Abee T. 1999. Cold shock proteins and low-temperature response of Streptococcus thermophilusCNRZ302. Appl Environ Microbiol, 65: 4436-4442.
  • Slonczewski JL, Foster JW. 1996. In: Escherichia coliand Salmonella: Cellular and Molecular Biology, Neidhardt FC (editor), ASM Press, Washington DC, pp. 1539-1545.
  • Lee K, Lee HG, Pi K, Choi YJ. 2008. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics, 8(8): 1624-1630.
  • Streit F, Delettre J, Corrieu G, Beal C. 2007. Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricusinduces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol, 105: 1071-1080.
  • Wu R, Zhang W, Sun T, Wu J,Yue X, Meng H, Zhang H. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stres. Int J Food Microbiol, 147: 181-187.
  • Pichereau V, Bourot S, Flahaut S, Blanco C, Auffray Y, Bernard T. 1999. The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis. Microbiol, 145: 427-435.
  • Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y. 1996. Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett, 138: 49-54.
  • Zhang Y, Zhang Y, Zhu Y, Mao S, Li Y. 2010. Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress. Appl Environ Microb, 76(10): 3177-3186.
  • Bohle LA, Fargestad EM, Veiseth-Kent E, Steinmoen H, Nes IF, Eijsink VGH, Mathiesen G. 2010. Identification of proteins related to the stres response in Enterococcus faecalis V583 caused by bovine bile. Proteome Sci, 8: 37-49.
  • Hamon E, Horvatovich P, Izquierdo E, Bringe F, Marchioni E, Aoude-Werner D, Ennahar S. 2011. Comparative proteomic analysis of Lactobacillus plantarumfor the identification of key proteins in bile tolerance. BMC Microbiol, 11: 63-74.
  • Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, van de Guchte M. 2006. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol, 72: 5143-5149.
  • Farr SB, Kogoma T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Mol Biol R, 55(4): 561-585. 47. Fernandez A, Thibessard A, Borges F, Gintz B, Decaris B, Leblond-Bourget N. 2004. Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. Arch Microbiol, 182(5): 364-372.
  • Wosten MM. 1998. Eubacterial sigma-factors. FEMS Microbiol Rev, 22: 127-150.
  • Giard JC, Hartke A, Flahaut S, Boutibonnes P, Auffray Y. 1997. Glucose starvation response in Enterococcus faecalis JH2-2: survival and protein analysis. Res Microbiol, 148: 27-35.
  • Zhu Y, Zhang Y, Li Y. 2009. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol, 83: 597-610.
  • Cil GI. 2012. Proteomiks ve gıda teknolojisinde kullanım alanları. Gıda, 37 (5): 303-308.