ENDÜSTRİYEL DOMATES ATIKLARINDAN KAROTENOİD EKSTRAKSİYONUNUN YANIT YÜZEY YÖNTEMİ İLE OPTİMİZASYONU

Bu çalışmada, bir domates işleme tesisinden temin edilen atıklardan geleneksel ve ultrason destekli yöntemle karotenoid ekstraksiyonu yapılmıştır. Çözücü olarak etil asetat kullanılmış ve yanıt yüzey yöntemi (response surface methodology, RSM) ile ultrason işleminde uygulanacak parametreler optimize edilmiştir. Ekstraksiyon şartlarından sıcaklık sabit tutularak ultrasonik güç (30-60-90 W), katı:çözgen oranı (1:10, 1:30, 1:50 g/mL) ve süre (5-20-35 dk) üzerinde çalışılmış, elde edilen ekstraktların karotenoid içeriği HPLC cihazında belirlenmiştir. Ayrıca geleneksel yöntemde domates kabuğu:etil asetat oranı 1:30 g/mL olacak şekilde ayarlanarak 75oC’de 120 dk ekstraksiyon işlemi gerçekleştirilmiştir. Box-Benhken tasarımı yardımıyla belirlenen parametreler doğrultusunda örnek:çözücü oranı 1:50, süre 35 dk, güç 60 W koşullarında en yüksek likopen (197.12 mg/kg) ve β-karoten (12.95 mg/kg) miktarları elde edilmiştir. Geleneksel yöntemle karşılaştırıldığında ultrason ekstraksiyonunda likopen miktarı %21.4 daha az, β-karoten miktarı ise %11.0 daha fazla olduğu belirlenmiştir. Uygulanan tasarımda likopen için uyumlu olan model ikinci dereceden polinom olurken, β-karoten için doğrusal modelin uygun olduğu tespit edilmiştir.

OPTIMIZATION OF CAROTENOID EXTRACTION FROM INDUSTRIAL TOMATO WASTE BY RESPONCE SURFACE METHODOLOGY

In this study, carotenoid extraction was performed by conventional and ultrasound-assisted method (UAE) from wastes obtained from a tomato processing plant. Ethyl acetate was used as the solvent and parameters were optimized by the response surface methodology (Box-Benhken design). The temperature was kept constant and ultrasonic power (30-60-90 W), solid:solvent ratio (1:10, 1:30, 1:50 g/mL) and time (5-20-35 min) were studied. In addition, in the conventional method, the tomato peel:solvent ratio was 1:30 g/mL and the extraction process was carried out at 75oC for 120 min. The highest lycopene (197.12 mg/kg) and β-carotene (12.95 mg/kg) amounts were obtained at solid:solvent ratio of 1:50 g/mL, extraction time of 35 min, and ultrasonic power of 60 W. The amount of lycopene and β-carotene was 21.4% less and 11.0% more in UAE, respectively. The fit model for lycopene was quadratic-polynomial, while the linear model was found to be suitable for β-carotene.

___

  • Ashraf, W., Latif, A., Lianfu, Z., Jian, Z., Chenqiang, W., Rehman, A., ... Karim, A. (2022). Technological advancement in the processing of lycopene: a review. Food Reviews International, 38(5): 857-883. doi: 10.1080/87559129.2020.1749653
  • Azabou, S., Sebii, H., Taheur, F. B., Abid, Y., Jridi, M., Nasri, M. (2020). Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Bioscience, 36: 100664. doi: 10.1016/j.fbio.2020.100664
  • Calvo, M. M., Dado, D., Santa-María, G. (2007). Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. European Food Research and Technology, 224(5): 567-571. doi:10.1007/s00217-006-0335-8
  • Carreira-Casais, A., Otero, P., Garcia-Perez, P., GarciaOliveira, P, Pereira, A. G., Carpena, M., Prieto, M.A. (2021). Benefits and drawbacks of ultrasound assisted extraction for the recovery of bioactive compounds from marine algae. International Journal of Environmental Research and Public Health, 18(17): 9153. doi: 10.3390/ijerph18179153
  • Cascant, M.M., Breil, C., Garrigues, S., de la Guardia, M., Fabiano-Tixier, A.S., Chemat, F. (2017). A green analytical chemistry approach for lipid extraction: computation methods in the selec- tion of green solvents as alternative to hexane. Analytical and Bioanalitycal Chemistry, 409: 3527–3539. doi: 10.1007/s00216-017-0323-9
  • Civan, M., Kumcuoğlu, S., Tavman, Ş. (2019). Acı biber salçası atıklarından ultrason destekli ekstraksiyon işlemiyle karotenoid ekstraksiyonu. Akademik Gıda, 17(3): 351-361. doi: 10.24323/akademik-gida.647717
  • da Silva Lima, R., Nunes, I. L., Block, J. M. (2020). Ultrasound-assisted extraction for the recovery of carotenoids from guava’s pulp and waste powders. Plant Foods for Human Nutrition, 75: 63-69. doi: 10.1007/s11130-019-00784-0
  • Dolatabadi Z., Elhami Rad A.H., Farzaneh V., Akhlaghi Feizabad S.H., Estiri S.H. and Bakhshabadi H. (2016). Modeling of the lycopene extraction from tomato pulps. Food Chemistry, 190:968. doi: 10.1016/j.foodchem.2015.06.069
  • Durmuş, M., Yetgin, Ö., Abed, M. M., Haji, E. K., Akcay, K. (2018). Domates bitkisi, besin içeriği ve sağlık açısından değerlendirmesi. International Journal of Life Sciences and Biotechnology, 1(2): 59-74. doi: 10.38001/ijlsb.482443
  • FAO, 2020. Alıntılanma adresi: https://www.fao.org/faostat/en/#data/QCL
  • Gençdağ, E., Görgüç, A., Birişik, M., Genç, E., Başkurt, C., Yılmaz, F. M. (2019). Kırmızı pancar suyu üretiminde enzim ön uygulaması: işlem koşullarının meyve suyu verimi, betanin miktarı, toplam fenolik madde ve antioksidan kapasite üzerine etkisi. GIDA, 44(4). doi: 10.15237/gida.GD19053
  • Gheonea, I., Aprodu, I., Circiumaru, A., Râpeanu, G., Bahrim, G. E., Stănciuc, N. (2021). Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. Journal of Food Engineering, 288: 110166. doi: 10.1016/j.jfoodeng.2020.110166
  • Goula, A. M., Ververi, M., Adamopoulou, A., Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics sonochemistry, 34: 821-830. doi: 10.1016/j.ultsonch.2016.07.022
  • Ho, K. K., Ferruzzi, M. G., Liceaga, A. M., San Martín-González, M. F. (2015). Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yield, LWT-Food Science and Technology, 62(1): 160-168. doi: 10.1016/j.lwt.2014.12.061
  • Isik, F., Yapar, A. (2017). Effect of tomato seed supplementation on chemical and nutritional properties of tarhana. Journal of Food Measurement and Characterization, 11(2): 667- 674. doi: 10.1007/s11694-016-9436-7
  • Khalid, M., Bilal, M., Iqbal, H. M., Huang, D. (2019). Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatalysis and Agricultural Biotechnology, 17: 399-407. doi: 10.1016/j.bcab.2018.11.027
  • Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT-Food Science and Technology, 49(2): 213-216. doi: 10.1016/j.lwt.2011.12.036
  • Kunthakudee, N., Sunsandee, N., Chutvirasakul, B., Ramakul, P. (2020). Extraction of lycopene from tomato with environmentally benign solvents: Box-Behnken design and optimization. Chemical Engineering Communications, 207(4): 574-583. doi: 10.1080/00986445.2019.1610882
  • Li, Y., Fabiano-Tixier, A. S., Tomao, V., Cravotto, G., Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics sonochemistry, 20(1): 12-18. doi: 10.1016/j.ultsonch.2012.07.005
  • Martínez-Hernández, G. B., Castillejo, N., Artés-Hernández, F. (2019). Effect of fresh–cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biology and Technology, 156: 110925. doi: 10.1016/j.postharvbio.2019.05.026
  • Munde, P. J., Muley, A. B., Ladole, M. R., Pawar, A. V., Talib, M. I., Parate, V. R. (2017). Optimization of pectinase-assisted and tri-solvent-mediated extraction and recovery of lycopene from waste tomato peels. Biotechnology, 7(3): 1-10. doi: 10.1007/s13205-017-0825-3
  • Rahimi, S., Mikani, M. (2019). Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchemical Journal, 146: 1033-1042. doi: 10.1016/j.microc.2019.02.039
  • Saini, R. K., Keum, Y. S. (2018). Carotenoid Extraction Methods: A Review of Recent Developments. Food Chemistry, 240: 90-103. doi: 10.1016/j.foodchem.2017.07.099
  • Silva, Y., Ferreira, T. A., Celli, G. B., Brooks, M. S. (2019). Optimization of lycopene extraction from tomato processing waste using an eco-friendly ethyl lactate–ethyl acetate solvent: a green valorization approach. Waste and Biomass Valorization, 10(10): 2851-2861. doi: 10.1007/s12649-018-0317-7
  • Strati, I. F., Oreopoulou, V. 2014. Recovery of carotenoids from tomato processing by-products–a review. Food Research International, 65: 311-321. doi: 10.1016/j.foodres.2014.09.032
  • Umair, M., Jabbar, S., Nasiru, M. M., Lu, Z., Zhang, J., Abid, M., Zhao, L. (2021). Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology. Molecules, 26(22): 6763. doi: 10.3390/molecules26226763
  • Yilmaz, T., Kumcuoglu, S., Tavman, S. (2017). Ultrasound-Assisted extraction of lycopene and β-carotene from tomato-processing Wastes. Italian Journal of Food Science, 29(1): 186-194.
  • Yogita, B. W., Dipak, D. P. (2017). An experimental design approach for optimization of spectrophotometric method for estimation of cefixime trihydrate using ninhydrin as derivatizing reagent in bulk and pharmaceutical formulation, Journal of Saudi Chemical Society, 21: 101–111. doi: 10.1016/j.jscs.2013.11.001
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR