Rho-kinaz enzim sisteminin vasküler kas tonusu üzerine fizyopatolojik etkileri

Amaç: Rho-kinaz enzimleri (ROCKs), küçük bir G proteini olan RhoA’nın ilk efektörlerinden biridir. Son bilgiler Rho/Rho-kinaz yolunun sadece damar düz kas hücrelerinde (DDKH) değil aynı zamanda aktinle hücre iskeletinin organizasyonu, hücre adezyon ve motilitesi, sitokinezis ve gen ekspresyonu gibi çeşitli hücresel fonksiyonlar üzerinde önemli bir fizyolojik rol oynadığını göstermektedir. Ana bulgular: Rho-kinazlar, trombus şekillenmesi, enflamasyon/oksidatif stres ve fibrozisi hızlandırmak suretiyle çeşitli molekülleri artan düzenlemeyle kontrol eder. Rho-kinaz aynı zamanda, DDKH’de hiperkontraksiyon, proliferasyon ve migrasyonun uyarılması ve enflamatuvar hücre motilitesinin artırılmasına aracı olur. Birçok çalışmada, Rho-kinazın vazospazm, arteriyoskleroz, iskemi/reperfüzyon hasarı, hipertansiyon, pulmoner hipertansiyon, inme ve kalp yetmezliği patogenezine ve merkezi sempatik sinir aktivitesinin artırılmasına önemli ölçüde karıştığı gösterilmiştir. Sonuç: Bu derlemede, vasküler kas tonusu üzerine ROCK enzimlerinin fizyolojik rolünü ve ROCK enzim inhibisyonunun ne şekilde kardiovasküler faydalar sağlayabildiği ile ilgili değerlendirmeleri inceledik.

Pathophysiological effects of Rho-Kinase enzyme system on the vascular muscle tone

Objective: Rho kinases (ROCKs) are the first effectors of the small G-protein RhoA. Recent data has demonstrated that Rho/Rho-kinase pathway plays an important physiological role in various cellular functions, not only in vascular smooth muscle cell (VSMC) contraction but also in actin cytoskeleton organization, cell adhesion and motility, cytokinesis, and gene expressions. Main findings: Rho-kinase upregulates various molecules that accelerate thrombus formation, inflammation/oxidative stress, and fibrosis. At the same time, Rho-kinase mediates VSMC hypercontraction, stimulates VSMC proliferation and migration, and enhances inflammatory cell motility. In the several studies, Rho-kinase has been shown to be substantially involved in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke and heart failure, and to enhance central sympathetic nerve activity. Conclusion: In this review, we reviewed what is known about the physiological role of ROCKs on the vascular muscle tone and speculate about how inhibition of ROCKs could provide cardiovascular benefits.

___

  • 1. Tang DD, Anfinogenova Y. Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 2008;13:130–40.
  • 2. Jernigan NL, Walker BR, Resta TC. Chronic hypoxia augments protein kinase G-mediated Ca2+ desensitization in pulmonary vascular smooth muscle through inhibition of RhoA/Rho kinase signaling. Am J Physiol Lung Cell Mol Physiol 2004;287:1220–9.
  • 3. Cogolludo A, Moreno L, Villamor E. Mechanisms controlling vascular tone in pulmonary arterial hypertension: Implications for vasodilator therapy. Pharmacology 2007;79:65–75.
  • 4. Noma K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 2006;290:661–8.
  • 5. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629–35.
  • 6. Farah S, Agazie Y, Ohan N, Ngsee JK, Liu XJ. A rhoassociated protein kinase, ROKα, binds insulin receptor substrate-1 and modulates insulin signaling. J Biol Chem 1998;273:4740–6.
  • 7. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997;389:990–4.
  • 8. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325–58.
  • 9. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 1996;15:2208–16.
  • 10. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rhoassociated kinase (Rho-kinase). Science 1996;273:245–8.
  • 11. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005;25:1767-75.
  • 12. Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol 2002;39:319–27.
  • 13. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxymethylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol 2001;21:1712–9.
  • 14. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 1999;79:387–423.
  • 15. Büssemaker E, Pistrosch F, Förster S, Herbrig K, Gross P, Passauer J, et al. Rho kinase contributes to basal vascular tone in humans: role of endothelium-derived nitric oxide. Am J Physiol Heart Circ Physiol 2007;293:541–7.
  • 16. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 2000;522:177–85.
  • 17. Randriamboavonjy V, Busse R, Fleming I. 20-HETE-induced contraction of small coronary arteries depends on the activation of Rho-kinase. Hypertension 2003;41:801–6.
  • 18. Disli OM, Ozdemir E, Berkan O, Bagcivan I, Durmus N, Parlak A. Rho-kinase inhibitors Y-27632 and fasudil prevent agonist-induced vasospasm in human radial artery. Can J Physiol Pharmacol 2009;87:595-601.
  • 19. Chitaley K, Webb RC. Nitric oxide induces dilation of rat aorta via inhibition of Cogolludo A, Moreno L, Villamor E. Mechanisms controlling vascular tone in pulmonary arterial hypertension: Implications for vasodilator therapy. Pharmacology 2007;79:65–75.
  • 20. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002;22:8467–77.
  • 21. Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, Dominiak P, Liao JK. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004;24:1842–7.
  • 22. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998;273:24266–71.
  • 23. Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol 2005;7:399–404.
  • 24. Ming XF, Barandier C, Viswambharan H, Kwak BR, Mach F, Mazzolai L, et al. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation 2004;110:3708–14.
  • 25. Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, et al. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol 2004;201:55–70.
  • 26. Laufs U, Marra D, Node K, Liao JK. 3-Hydroxy-3- methylglutaryl-Co reductase inhibitors attenuate vascular smooth muscle proliferation by pr venting rho GTPaseinduced down-regulation of p27(Kip1). J Biol Chem 1999;274:21926–31.
  • 27. Li S, Moon JJ, Miao H, Jin G, Chen BP, Yuan S, et al. Signal transduction in matrix contraction and the migration of vascular smooth muscle cells in three-dimensional matrix. J Vasc Res 2003;40:378–88.
  • 28. Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, et al. Role of Rho-associated kinase in neointima formation after vascular injury. Circulation 2001;103:284–9.
  • 29. Wang YX, Martin-McNulty B, da Cunha V, et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 2005;111:2219–26.
  • 30. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995;75:487–517.
  • 31. Miano JM. Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 2003;35:577–93.
  • 32. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 2001;276:341–7.
  • 33. Kamiyama M, Utsunomiya K, Taniguchi K, Yokota T, Kurata H, Tajima N, et al. Contribution of Rho A and Rho kinase to platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells. J Atheroscler Thromb 2003;10:117–23.
  • 34. Seasholtz TM, Majumdar M, Kaplan DD, Brown JH. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res 1999;84:1186–93.
  • 35. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, et al. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 2000;35:313–8.
  • 36. Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, et al. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ Res 2001;89:583–90.
  • 37. Lan C, Das D, Wloskowicz A, Vollrath B. Endothelin-1 modulates hemoglobin-mediate signaling in cerebrovascular smooth muscle via RhoA/Rh kinase and protein kinase C. Am J Physiol Heart Circ Physiol 2004;286:165–73.
  • 38. Chrissobolis S, Budzyn K, Marley PD, Sobey CG. Evidence that estrogen suppresses rhokinase function in the cerebral circulation in vivo. Stroke 2004;35:2200–5.
  • 39. Seko T, Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res 2003;92:411–8.
  • 40. Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, et al. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J 2001;15:1062–4.
  • 41. Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, et al. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 2002;39:245–50.
  • 42. Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, et al. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension 2001;38:100–4.
  • 43. Hishikawa K, Nakaki T, Marumo T, Hayashi M, Suzuki H, Kato R, et al. Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells. J Clin Invest 1994;93:1975–80.
  • 44. Zeidan A, Nordstrom I, Albinsson S, Malmqvist U, Sward K, Hellstrand P. Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors. Am J Physiol Cell Physiol 2003;284:1387–96.
  • 45. Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm. Lessons from animal models. Jpn Circ J 2000;64:1–12.
  • 46. Katsumata N, Shimokawa H, Seto M, Kozai T, Yamawaki T, Kuwata K, et al. Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1β. Circulation 1997;96:4357–63.
  • 47. Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 1999;43:1029–39.
  • 48. Sato S, Ikegaki I, Asano T, Shimokawa H. Antiischemic properties of fasudil in experimental models of vasospastic angina. Jpn J Pharmacol 2001;87:34–40.
  • 49. Sato M, Tani E, Fujikawa H, Kaibuchi K. Involvement of rhokinase- mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 2000;87:195– 200.
  • 50. Watanabe Y, Faraci FM, Heistad DD. Involvement of rhokinase- mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 2000;87:195– 200.
  • 51. Wickman G, Lan C, Vollrath B. Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and vasospasm. Circ Res 2003;92:809–16.