Yüksek sıcaklık uygulanan çimento harçlarının farklı soğutma koşullarındaki bazı fiziksel özellikleri

Bu çalışmada, yüksek sıcaklık etkisi altında kalmış çimento harçlarının farklı soğutma koşullarında eğilmedeçekme dayanımı, basınç dayanımı ve boşluk oranı değişimi incelenmiştir. Çimento harç örneklerine 100, 300,500, 700 ve 900 °C sıcaklıklar uygulanmıştır. Soğutma işlemi havada ve suda olmak üzere iki şekildegerçekleştirilmiştir. Laboratuar ısısına kadar soğutulan örneklerin eğilmede çekme dayanımı, basınç dayanımı veboşluk değerleri belirlenmiştir. Farklı sıcaklıklar ve farklı soğutma şartlarında veriler kullanılarak çoklu doğrusalregresyon modelleri oluşturulmuştur. Harç örneklerinin eğilmede çekme ve basınç dayanımlarında 100 °C’de birmiktar artış olmasına rağmen bundan sonraki sıcaklıklarda sıcaklık ortalamasına bağlı olarak azalma eğilimigörülmüştür. Soğutma koşullarına göre; 500 °C’deki eğilmede çekme dayanımının havada soğutulmuşörneklerde % 29, suda soğutulmuş da ise % 58; basınç dayanımının havada soğutulmuş örneklerde % 10, sudasoğutulmuş da ise % 35 oranında azaldığı görülmüştür. Aynı zamanda boşluk oranının havada soğutulmuşörneklerde % 3.3, suda soğutulmuş örneklerde ise % 9 oranında arttığı görülmüştür.

Physical properties of cement mortars exposed to high temperature in various cooling conditions

Tensile strength of bending, compressive strength and porosity rate change of cement mortars exposed to hightemperature were examined in this study. 100, 300, 500, 700 and 900 C° temperatures were applied to cementmortar samples. Cooling process were implemented in two ways as in air and in water. Tensile strength ofbending, compressive strength and porosity rates of samples, which were cooled to laboratory temperature, weredetermined. Multiple linear regression modeling were made up by using the data from different temperatures andcooling conditions. Although there is an increase in tensile strength and compressive strength of mortar samplesin 100 C°, after this temperature it was seen that there was a decrease tendency according to averagetemperature. According to cooling conditions it was observed that the tensile strength of bending of the samplesthat were cooled in air were decreased 29%, and that were cooled in water were decreased 58%; the compressivestrength of the samples that were cooled in air was decreased 10%, and that were cooled in water were decreased35%. Furthermore, it was observed that porosity rate of the samples that were cooled in air were increased 3.3%,and that were cooled in water were increased 9%.

___

  • 1. Bazant Z. B., Chern J.C., “Normal And Refractory Concrete For Lmfbr Applications, Final Report”, NP-2437, Research Project 1704- 12, 1704-19 Northwestern University, Evanston, 1982.
  • 2. Schneider U., “Behavior Of Concrete At High Temperatures”, Deutsxher Ausschuss Fur Stahlbeton, Berlin, 15-24, 1982
  • 3. Schneider U., “Concrete At High Temperatures”, University Kassel, Monchebergstr 55-82, 1988
  • 4. Şensoy L., “Betonun Yangın Dayanımı ve Yeniden Kullanılabilirliği”, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 02-14, 1989
  • 5. Bazant, Z.P., Kaplan, M.F., “Concrete At High Temperatures” Material Properties and Mathematical Models, Longman Group, England, (ISBN 0-582-08624-4), 1996
  • 6. X. Fu, D.D.L. Chung, “Reversible Decrease Of The Flexural Dynamic Modulus Of Cement Pastes Up On Heating”, Cement and Concrete. 27 (6) 839– 844, 1997
  • 7. Malhotra, H.L. “The Effect Of Temperature On Compressive Strength Of Concrete”, Magazine of Concrete, 875–894. 1956
  • 8. Koury, G.A., Sarshar, R., Sullivan, P.J.E., Grainger, B.N., “Factors Affecting The Compressive Strength Of Unsealed Cement Paste And Concrete At Elevated Temperatures Up To 600”, Wiss. Z. Hochsch. Archit. Bauwes. Weimar, B 36 (1– 2) 89–92, 1990
  • 9. Rostasy, F.S. Ehm, C., Hinrishsmeyer K., “Structural Alterations İn Concrete Due To Thermal And Mechanical Stresses”, J.C. Maso (Ed.), Pore Structure and Materials Properties, vol. 1, Chapman & Hall, London- New York, 92– 99, 1987
  • 10. Bazant, Z. P. Review Of Literature On High Temperature Behavior Of Concrete, Pp. 71-142 Of The Report. Evaluation Of The Structural İntegrity Of LMFBR Equipment Cell Liners - Results Of Preliminary Investigations By W. J. Mcaffee, W. K. Sartory, Z. P. Bazant And P. A. Stancampiano. Tennessee, Oak Ridge National Laboratory, (Contract W-7405 Eng 26), January 1976. Report ORNL-TM-514S. (Available
  • 11. Becker, J. M. And Bresler, B. Reinforced Concrete Frames In Fire Environments. Proceedings Of The American Society Of Civil Engineers. Vol. 103, No. STL Pp. 211-224, January 1977.
  • 12. Dougill, J. W. Conditions For Instability In Restrained Concrete Panels Exposed To Fire. Magazine Of Concrete Research. Vol. 24. Pp. 139-148, 1972.
  • 13. Hundt, J. Zur Warme- Und Feuchtigkeitsleitung In Beton. (Heat And Moisture Conduction In Concrete.) Berlin, Wilhelm Ernst Und Sohn, 1977. Deutscher Ausschuss Fur Stahlbeton. Heft 280. Pp. 21-41.
  • 14. Mcdonald, J. E. Moisture Migration In Concrete. Vicksburg, Miss., U.S. Army Engineers Waterways Experimental Station, Concrete Laboratory, Technical Report C-75-1. Pp. 36 + Tables + Plates, May 1975.
  • 15. Neville, A. M. Properties Of Concretes. New York, John Wiley And Sons, A Halsted Press Book, 1973.
  • 16. England, G. L. And Ross, A. D. Shrinkage, Moisture, And Pore Pressures In Heated Concrete. Concrete For Nuclear Reactors. Detroit, American Concrete Institute, Special Publication SP-34. Vol. II. Pp. 883-907, 1972.
  • 17. Fischer, R. Ober Das Verhalten Von Zementmortel Und Beton Bei Hoheren Temperaturen. (On The Behaviour Of Cement Mortar And Concrete At High Temperatures.) Berlin, Wilhelm Ernst Und Sohn, 1970. Deutscher Ausschuss Filr Stahlbeton. Pp. 61- 128, 216.
  • 18. Harmathy, T. Z. Thermal Properties Of Concrete At Elevated Temperatures. ASTM Journal Of Materials. Vol. 5, No. 1. March 1970. Pp. 47-74. Reprint: Ottawa, National Research Council Of Canada, DBR Paper No. 426, 1970.
  • 19. Harmathy, T. Z. And Allen, L. W. Thermal Properties Of Selected Masonry Unit Concretes. Journal Of The American Concrete Institute. Proceedings Vol. 70, No. 2. Pp. 132-144, February 1973.
  • 20. Zdenek P. Bazant Pore Pressure In Heated Concrete Walls: Theoretical Prediction Magazine Of Concrete Research : Vol. 31, No. 107, June 1977
  • 21. Koury, G.A., Grainger, V.N., Sullivan, P.J.E., “Transient Thermal Strain Of Concrete: Literature Review, Conditions Within Specimen And Behaviour Of Individuals Constituents”, Magazine Of Concrete Resource, 37 (132) 131– 143. 1985
  • 22. Consolazio, G.R., Mcvay, M.C., Rish, J.W., “Measurement And Prediction Of Pore Pressures In Saturated Cement Mortar Subject To Radiant Heating”, ACI Materials, J. 95 (5) 525–536 1998
  • 23. Rostasy, F.S., Weis, R., Wiedemann, G., “Changes Of Pore Structure Of Cement Mortars Due To Temperature”, Cement Of Concrete Resource, 157– 164, 1980
  • 24. Piasta, J., “Heat Transformations Of Cement Phases And The Microstructure Of Cement Paste”, Materials Of Construction, 17 (102) 415– 420 1984
  • 25. Alonso, C., Andrade, C., Menéndez, E., “Evolucio´N Microestructural De Hormigones De Altas Y Ultra Altas Resistencias A Elevadas Temperatures”, Hormigo¯N Y Acero, 221–222 97– 105, 2001
  • 26. Heikal, M., “Effect Of Temperature On The Physico–Mechanical And Mineralogical Properties Of Homra Pozzolanic Cement Pastes”, Cement Of Concrete. Resource, 30 1835–1839, 2000
  • 27. Handoo, S.K., Agarwal, S., Agarwal, S.K., “Physicochemical, Mineralogical And Morphological Characteristics Of Concrete Exposed To Elevated Temperatures”, Cement Of Concrete. Resource, 32 1009–1018, 2002
  • 28. Yüzer N., Aköz F., Öztürk L., D., “Yangına Maruz Yapılarda Betonun Basınç Dayanım-Renk Değişimi İlişkisi”, Yıldız Teknik Üniversitesi Dergisi, 4, 2001
  • 29. Castellote, M., Alonso, C., Andrade, C., Turrillas, X., Campo. J., “Composition And Microstructural Changes Of Cement Pastes Upon Heating, As Studied By Neutron Diffraction”, Pergamon, 1633-1644. 2004
  • 30. P. Pipilikaki, M. Beazi-Katsioti “The Assessment Of Porosity And Pore Size Distribution Of Limestone Portland Cement Pastes” Construction And Building Materials 23;1966– 1970, 2009
  • 31. Sarshar, R., Khoury, G.A., “Material And Environmental Factors Influencing The Compressive Strength Of Unsealed Cement Paste And Concrete At High Temperatures”, Magazine Of Concrete Resource. 45 (162) 51–61, 1993
  • 32. TS EN 197-1, “Çimento: Bölüm-1 Genel Çimentolar- Bileşim Özellikler Ve Genel Kurallari”, Türk Standartları Enstitüsü, Ankara, 2002.
  • 33. TS EN 196-1, “Çimento Deney Metotları-Bölüm 1: Dayanım Tayini”, Türk Standartları Enstitüsü, Ankara 5-10. 2002
  • 34. TS EN 196-3, “Çimento Deney Metotları-Bölüm 3: Priz Süresi Ve Genleşme Tayini”, Türk Standartları Enstitüsü, Ankara, 2002.
  • 35. TS EN 196-6, “Çimento Deney Metotları-Bölüm 6 :İncelik Tayini”, Türk Standartları Enstitüsü, Ankara, 2002.
  • 36. ASTM C188 - 95 “Standard Test Method For Density Of Hydraulic Cement”, ASTM International, 2003
  • 37. ASTM C1437 - 07 “Standard Test Method For Flow Of Hydraulic Cement Mortar” ASTM International,
  • 38. British Standards Institution, BS EN 13501-1, “Fire Classification Of Construction Products And Building Elements. Classification Using Data From Reaction To Fire Tests”. London: BSI. 2007.
  • 39. International Standard, ISO 834., “Fire Resistance Test Elements Of Building ISO Standard 1975.
  • 40. ASTM D 4404 “Standard Test Method For Determination Of Pore Volume And Pore Volume Distribution Of Soil And Rock By Mercury Intrusion Porosimetry”, ASTM International, Aug 31 1984.
  • 41. Hewlett C.P., “Lea’s Chemistry of Cemets and Concrete”, Fourth edition, Elsevier Book, 95- 126, 2007 From National Technical Information Service, Springfield, Va.)