Elektro erozyon ile işlemede işleme mekanizmasının ısıl modellenmesi

Bu çalışmada, elektro erozyon ile işlemede işparçası malzemesinin aşınmasının sonlu elemanlar yöntemi ilemodellemesi yapılmıştır. Isıl-elektriksel model, tek bir boşalım için geliştirilmiştir. Geliştirilen model dielektriksıvı içerisinde elektriksel boşalım sonucu oluşan enerjiyi, plazma kanalı genişliğini ve ortamda meydana gelenısı transferlerini içermektedir. Literatürde yer alan deneysel çalışma parametreleri kullanılarak, plazma kanalındaoluşan enerjinin işparçası malzemesinde oluşturduğu sıcaklık dağılımı incelenmiştir. Ergime sıcaklığının üstüneçıkan işparçası malzemesinin ergime kraterinden kaldırıldığı kabul edilmiştir. Çalışmada, sonlu elemanlaryöntemini kullanarak analiz yapan ANSYS Workbench v.11 programı kullanılmıştır. Elektro erozyon ile işlemetekniği zamana bağlı ısıl analiz yöntemi kullanılarak simüle edilmiştir. Farklı işleme parametrelerinde eldeedilen teorik sonuçların deneysel sonuçlarla büyük ölçüde örtüştüğü görülmüştür.

Thermal modelling of machining mechanism in electrical discharge machining

In this study, theoretical model of workpiece material removal in electrical discharge machining (EDM) wasdeveloped. Thermo-electrical model was developed for a single discharge. Developed model includes severalaspects like, generated energy formed by the electrical discharge in liquid media, plasma channel radius variationand heat transfer from the channel. By using different experimental study parameters used in literature, effect ofgenerated energy in plasma channel on workpiece was investigated. The developed model evaluates thetemperature distribution in the workpiece material using finite element solver ANSYS Workbench (v.11)software. It’s assumed that the workpiece material reaches the melting point of workpiece material was removedfrom the surface. Electrical discharge process was simulated by using transient thermal analysis. Finally, thedeveloped model has been validated by comparing the theoretical material removal results with the experimentalones.

___

  • 1. Özgedik, A., Çoğun, C., "An experimental investigation on tool wear in electric discharge machining", Int. Journal of Advanced Manufacturing Technology, Cilt 27, 488-500 (2006).
  • 2. DiBitonto, D. D., Eubank, P. T., Patel,M. R., Barrufet M. A., "Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model", J. Appl. Phys., Cilt 66 (9), 4095-4103 (1989).
  • 3. Patel, M. R., Barrufet, M. A., Eubank, P. T., DiBitonto D. D., "Theoretical models of the electrical discharge machining process. II. The anode erosion model", J. Appl. Phys., Cilt 66 (9), 4104-4111 (1989).
  • 4. Eubank, P. T., Patel, M. R., Barrufet, M. A., Bozkurt, B., "Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model", J. Appl. Phys., Cilt 73 (11), 7900-7909 (1993).
  • 5. Marafona, J., Chousal, J. A. G., "A finite element model of EDM based on the Joule effect", Int. Journal of Machine Tools & Manufacture, Cilt 46, 595-602 (2006).
  • 6. Kansal, H. K., Singh, S., Kumar, P., "Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method", Mathematical and Computer Modelling, Cilt 10, 1-21 (2007).
  • 7. Das, S., Klotz, M., Klocke, F., "EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses", Journal of Materials Processing Technology, Cilt 142, 434-451 (2003).
  • 8. Yadav, V., Jain, V. K., Dixit, P. M., "Thermal stresses due to electrical discharge machining", Int. Journal of Machine Tools & Manufacture, Cilt 42, 877-888 (2002).
  • 9. Snoeys, R., Van Dijck, F., “Investigations of EDM operations by means of thermo mathematical model", Annals of CIRP, Cilt 20(1), 35 (1971).
  • 10. Salah, N. B., Ghanem, F., Atig, K. B., "Numerical study of thermal aspects of electric discharge machining process", Int. Journal of Machine Tools & Manufacture, Cilt 46, 908- 911(2006).
  • 11. Kumar, P. D., "Study of thermal stresses induced surface damage under growing plasma channel in electro-discharge machining", Journal of Materials Processing Technology, Cilt 202, 86- 95 (2008).
  • 12. Singh, A., Ghosh, A., "A thermo-electric model of material removal during electric discharge machining", Int. Journal of Machine Tools & Manufacture, Cilt 39, 669-682 (1999).
  • 13. Allen, P., Chen, X., "Process simulation of micro electro-discharge machining on molybdenum", Journal of Materials Processing Technology, Cilt 186, 346-355 (2007).
  • 14. 14.Kumar, P. D.,Bhoi, R. K., "Analysis of spark eroded crater formed under growing plasma channel in electro discharge machining", Machining Science and Technology, Cilt 9, 239-261 (2005).
  • 15. Erden, A., Kaftanoğlu, B., "Heat transfer modelling of electric discharge machining", Proc. 21 st. Int. Machine Tool and Des. Res. Conf., 351-359 (1981).
  • 16. Bhondwe, K. L., Yadava, V., Kathiresan, G., "Finite element prediction of material removal rate due to electro-chemical spark machining", Int. Journal of Machine Tools and Manufacture, Cilt 46, 1699-1706 (2006).
  • 17. 17.Mahardika, M., Mitsui, K., "A new method for monitoring micro-electric discharge machining process", Int. Journal of Machine Tools & Manufacture, Cilt 48, 446-458 (2008).
  • 18. 18. Yeo, S.H.,Tan, P.C., "Critical assessment and numerical comparison of electro thermal models in EDM", Journal of Materials Processing Technology, Cilt 203, 241- 251(2008).
  • 19. 19. Çoğun, C., "Variation of discharge profile with
  • 20. discharge power in electric discharge machining (EDM)", JSME International Journal, Cilt 32(3), 480-483 (1989).
  • 21. 20. Snoeys, R., Van Dijck, F., "Plasma channel diameter growth affects stock removal in EDM", Annals of the CIRP, Cilt 21(1), 39-40 (1972).
  • 22. 21. Ho, K. H., Newman, S. T., "State art electrical discharge machining (EDM)", Int. Journal of Machine Tools & Manufacture, Cilt 40, 1287-1300 (2003).
  • 23. 22. Simao, J., Lee, H. G., Aspinwall, D. K., Dewes, R. C., Aspinwall, E. M., "Workpiece surface modification using electrical discharge machining", Int. Journal of Machine Tools & Manufacture, Cilt 43, 121-128 (2003).
  • 24. 23. Ikai, T., Hashigushi, K., "Heat input for crater formation in EDM", Proceedings of International Symposium for Electro Machining - ISEM XI, EPFL, Lausanne, Switzerland, 163-170 (1995).