Antibody responses against foot-and-mouth disease vaccine differ between the sexes in cattle

Amaç: Sığırlarda şap virusuna karşı aşılamaya bağlı gelişen humoral immun yanıt üzerine cinsiyetin etkisinin araştırılması amaçlanmıştır.Gereç ve Yöntem: Sığırlar (n=252) yaşlarına (0-11 ay, 12-35 ay ve >35 ay) ve cinsiyetlerine (erkek-dişi) göre 6 gruba ayrıldı. Her bir gruptaki hayvanlar yağ adjuvantlı bivalent (O1 Manisa, A22 Irak suşları) aşı ile aşılandı. Aşılanan sığırlardaki antikor yanıtı solid faz kompetitif ELISA ile belirlendi.Bulgular: Yüz yirmi altı erkek serumunun, 86 (%68.2)'sında serotip O, 90 (%71.4)'ında serotip A'ya karşı antikor tespit edildi. Dişi hayvanlarda ise 126 serumun 106 (%84.1)'sında serotip O, 112 (%88.8)'sinde serotip A'ya karşı oluşan antikor tespit edildi. Dişi serumlarının 89 (%70.6)'unda serotip O, 98 (%77.7)'sinde serotip A'ya karşı koruyucu düzeyde antikor yanıtı belirlendi. Erkek sığır serumlarının ise 67 (%53.1)'sinde serotip O, 81 (%64.2)'inde serotip A'ya karşı koruyucu düzeyde antikor varlığı tespit edildi. Dişi ve erkek hayvanlar arasında hem serotip O (P=0.0063) hem de serotip A (P=0.0259)'ya karşı koruyucu düzey antikor yanıtları arasındaki farklılık istatiksel olarak önemli bulundu.Öneri: Sonuçlar yağ adjuvantlı bivalent (O1 Manisa, A22 Irak suşları) aşı ile aşılanan dişi hayvanların, erkek hayvanlardan daha yüksek antikor yanıtlarına sahip olduğunu göstermektedir. Dişi ve erkek hayvanlar arasında şap aşılamasına bağlı gelişen immun yanıt farklılığının aydınlatılması için daha fazla çalışmaya ihtiyaç vardır.

Sığırlarda şap hastalığına karşı aşılamada cinsiyetler arasında antikor yanıtı farklılığı

Aim: The aim of this study was to investigate the effects of sex on the humoral immune response induced in cattle by vaccination against foot-and-mouth disease virus (FMVD).Materials and Methods: Cattle (n=252) were classified into six groups according to the age (0-11 months, 12-35 months, and >35 months) and sex (male-female). Animals in each group were vaccinated with oil-adjuvanted bivalent vaccine (O1 Manisa, A22 Iraq FMDV strains). Solid-phase competitive ELISA was used to measure antibodies produced in vaccinated cattle.Results: Serotype O antibody was detected in 86 (68.2%) and serotype A antibody in 90 (71.4%) of 126 male sera. In female animals, serotype O antibody was detected in 106 (84.1%) and serotype A antibody in 112 (88.8%) of 126 sera. Protective level of antibody against serotype O was detected in 89 (70.6%) and serotype A in 98 (77.7%) of 126 female sera. Protective level of antibody against serotype O antibody was detected in 67 (53.1%) and serotype A in 81 (64.2%) of 126 male sera. The differences between the level of protective antibody against both serotype O (P=0.0063) and serotype A (P=0.0259) in female and male animals were statistically significant.Conclusions: Results showed that female animals vaccinated with oil-adjuvanted bivalent vaccine (containing O1 Manisa, A22 Iraq FMDV strains) had higher antibody responses than male animals. In order to elucidate difference between immune response of male and female animals to FMD vaccination more studies are needed.

___

  • Aaby P, Jensen H, Walraven G, 2006. Age-specific changes in the female–male mortality ratio related to the pattern of vaccinations: an observational study from rural Gambia. Vaccine, 24, 4701-4708.
  • Alexandersen S, Mowat GN, 2005. Foot-and-Mouth Disease: Host Range and Pathogenesis. In: Foot and mouth disea- se virus, Ed; Mahy BWJ, Springer-Verlag, Berlin, Germany, pp: 9-42.
  • Berinstein A, Tami C, Taboga O, Smitsaart E, Carrillo E, 2000. Protective immunity against foot-and-mouth disease vi- rus induced by a recombinant vaccinia virus. Vaccine, 18, 2231-2238.
  • Borrego B, Camarero JA, Mateu MG, Domingo E, 1995. A highly divergent antigenic site of foot-and-mouth disea- se virus retains its immunodominance. Viral Immunol, 8, 11-18.
  • Bouman A, Heineman MJ, Faas MM, 2005. Sex hormones and the immune response in humans. Hum Reprod Update, 11, 411-423.
  • Carreras E, Turner S, Paharkova-Vatchkova V, Mao A, Dasc- her C, Kovats S, 2008. Estradiol acts directly on bone mar- row myeloid progenitors to differentially regulate GM-CSF or Flt3 ligandmediated dendritic cell differentiation. J Im- munol, 180, 727-738.
  • Cloete M, Dungu B, Van Staden LI, Ismail-Cassim N, Vosloo W, 2008. Evaluation of different adjuvants for foot-and-mouth disease vaccine containing all the SAT serotypes. Onders- tepoort J Vet Res, 75, 17-31.
  • Dai R, Ahmed SA, 2011. MicroRNA, a new paradigm for un- derstanding immunoregulation, inflammation, and auto- immune diseases. Transl Res, 157, 163-179.
  • Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo CM, Car- rillo E, Nunez JI, Sobrino F, 2003. Evolution of foot-and- mouth disease virus. Virus Res, 91, 47-63.
  • FAO 2013. http://www.fao.org/fileadmin/user_upload/ eufmd/docs/FMD_monthly_reports/Dec_report_on_ FMD_T_Alexandrov_.pdf, Accessed at: 14.06.2013. Fish EN, 2008. The X-files in immunity: sex-based differen- ces predispose immune responses. Nat Rev Immunol, 8, 737-744.
  • Gilbert M, Aktas S, Mohammed H, Roeder P, Sumption K, Tu- fan M, Slingenbergh J, 2005. Patterns of spread and per- sistence of foot-and-mouth disease types A, O and Asia-1 in Turkey: a meta-population approach. Epidemiol Infect, 133, 537-545.
  • Goris N, Willems T, Diev VI, Merkelbach-Peters P, Vanbinst T, Van der Stede Y, Kraft HP, Zakharov VM, Borisov VV, Na- uwynck HJ, Haas B, De Clercq K, 2008. Indirect foot-and- mouth disease vaccine potency testing based on a serolo- gical alternative. Vaccine, 26, 3870-3879.
  • Grubman MJ, Baxt B, 2004. Foot and mouth disease. Clin Mic- robiol Rev, 17, 465-493.
  • Haeberle EJ, 1983. The Sex Atlas, Continuum International Publishing Group, New York, USA, pp: 168.
  • Jamal SM, Bouma A, Van den Broek J, Stegeman A, Chenard G, Dekker A, 2008. Foot-and-mouth disease vaccine potency testing: The influence of serotype, type of adjuvant, vali- ancy, fractionation method, and virus culture on the dose- response curve in cattle. Vaccine, 26, 6317-6321.
  • Kitching P, Hammond J, Jeggo M, Charleston B, Paton D, Rod- riguez L, Heckert R, 2007. Global FMD control- is it an opti- on? Vaccine, 25, 5660-5664.
  • Klein J, Parlak U, Ozyoruk F, Christensen LS, 2006. The mo- lecular epidemiology of foot-and-mouth disease virus se- rotypes A and O from 1998 to 2004 in Turkey. BMC Vet Res, 4, 2-35.
  • Klein SL, 2000. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev, 24, 627-638.
  • Klein SL, Jedlicka A, Pekosz A, 2010. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis, 10, 338-349. Kovats S, Carreras E, Agrawal H, 2010: Sex steroid receptors in immune cells. In: Sex hormones and immunity to infecti- on, Eds; Klein SL, Roberts CW, Springer-Verlag, Berlin, Ger- many, pp: 53-92.
  • Lorenzo ME, Hodgson A, Robinson DP, Kaplan JB, Pekosz A, Klein SL, 2011. Antibody responses and cross protection against lethal influenza A viruses differ between the sexes in C57BL/6 mice. Vaccine, 29, 9246-9255.
  • Mackay DKJ, Bulut AN, Rendle T, Davidson F, Ferris NP, 2001. A solid-phase competition ELISA for measuring antibody to foot-and-mouth disease virus. J Virol Methods, 97, 33-48.
  • Mannan MA, Siddique MP, Uddin MZ, Parvaz MM, 2009. Pre- valence of foot and mouth disease (FMD) in cattle at Megh- na upazila in Comilla in Bangladesh. J Bangladesh Agril Univ, 7, 317-319.
  • OIE 2008. Foot and mouth disease. In: OIE (Ed): Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 6th edition, OIE, Paris, France, pp: 190-216.
  • Paton D, 2006. Report of the annual meeting of EU national foot-and-mouth disease laboratories. 22nd-23rd Novem- ber, Brussels.
  • Pinheiro I, Dejager L, Libert C, 2011. The X chromosome- genomic context may affect X-located miRNAs and downs- tream signaling, thereby contributing to the enhanced im- mune response of females. Bioessays, 33, 791-802.
  • Rettew JA, Huet-Hudson YM, Marriott I, 2008. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immu- nity. Biol Reprod, 78, 432-437.
  • Rodriguez LL, Grubman MJ, 2009. Foot and mouth disease vi- rus vaccines. Vaccine, 27, 90-94.
  • Sap Institute 2009. Instructions for determination antibody in serum by solid-phase competitive ELISA. pp;1-10.
  • Sap Institute 2013. http://www.sap.gov.tr/page.php?ID=17 Accessed at: 14.06.2013.
  • Sarker S, Talukder S, Haque MH, Islam MH, Gupta SD, 2011. Epidemiological study on Foot-and-Mouth Disease in catt- le: Prevalence and risk factor assessment. WJAS, 71-73.
  • Sil BK, Taimur MJFA, 2000. ELISA based techniques for the identification of foot and mouth disease virus and vaccine evaluation In Bangladesh. Use of immunoassay technologi- es for the diagnosis and control of foot and mouth disease in Southeast Asia. IAEA, Vienna, Austria, pp; 49-56.
  • Smitsaart EN, Zanelli M, Rivera I, Fondevila N, Compaired D, Maradei E, Bianchi T, O'Donnell V, Schudel AA, 1998. As- sessment using ELISA of the herd immunity levels induced in cattle by foot-and-mouth disease oil vaccines. Prev Vet Med, 33, 283-296.
  • Van Regenmortel MHV, Fauquet CM, Bishop DH, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, Mc Geoch DJ, Pringle CR, Wickner RB, 2000. Virus taxonomy. Academic Press, San Diego, USA, pp: 657-673.
  • Wang G, Pan L, Zhang Y, Wang Y, Zhang Z, Lü J, Zhou P, Fang Y, Shoutian J, 2011. Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS ONE, 6, e27605.
  • WRLFMD 2013. http://www.wrlfmd.org/ref_labs/ref_lab_ reports/OIE-FAO%20FMD%20Ref %20Lab%20Net- work%20Report%202011.pdf., Accessed at: 11.06.2013.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi