An anatomical aspect on masseteric muscles in cattle rabies by Real-Time PCR

Amaç: Bu çalışmada sığırlarda kuduz virüsünün masseter kaslarda izlediği patho-anatomik lokalizasyonun Real-Time PCR ile belirlenmesi amaçlanmıştır.Gereç ve Yöntem: Çalışma kuduz bir köpek tarafından yüz bölgesinden ısırılmış 1.5 yaşında erkek sığırda yapıldı. Kuduz şüphesiyle karantinada tutulduktan 15 gün sonra ölen sığırın ilgili bölgesinden doku örnekleri alındı. Standart diseksiyon yöntemleriyle ısırılan bölgede N. trigeminus sinirinin dalları incelendi. Sığır baş bölgesinin 32 farklı kısmı Tagman probe esasına dayalı RT-PCR ve FAT yöntemiyle incelendi.Bulgular: Kuduz virüsüne spesifik nükleik asitler masseter kasların motor sinirlerinde; N. trigeminus'un N. mandibularis dalında N. masticatorius, N. mandibularis, N. massetericus ve Nn. temporalis profunda unilaterally ganglion trigeminale ve ponsta Real Time-PCR ile belirlendi. Beynin diğer kısımlarında incelenen örneklerde tespit edilemedi.Öneri: Bu çalışmada sığırlarda nöronal bağlantıların ve sinaps geçişlerinin virüs nükleik asitlerinin RT-PCR yöntemi ile ortaya konulmasıyla anatomik olarak izlenebileceği belirlendi.

Sığır masseter kaslarında kuduz virüsünün anatomik lokalizasyonun Real-Time PCR ile belirlenmesi

Aim: In this case, the anatomical pathways on masticatory muscles of cattle infected rabies virüs have been determined by Real Time PCR (RT-PCR).Materials and Methods: A 1.5-year old male Brown Swiss cattle which was bitten in face by dog was used. The cattle was died 15 days post exposure to the dog rabies suspected. The areas where the tissue samples to taken. The origin, course and branches of the trigeminal nerve were exposed by standart dissection method. Rabies virus was investigated on 32 different parts of the cattle's head by means of TaqMan Probe-Based Real-Time PCR and FAT.Results: The rabies virus specific nucleic acid was detected in masseter muscles motor nerves; N. mandibularis branch of N. trigeminus, N. masticatorius, motor leaf of N. mandibularis, N. massetericus and Nn. temporalis profunda which are two extra branches of N. masticatorius, unilaterally ganglion trigeminale, and pons by Real Time-PCR. However, no rabies virus has been detected in the samples obtained from other different parts of the brain.Conclusion: Contrary to immunohistochemical methods, it is not possible to trace neuronal connections across synapses within the brain. RT-PCR method could be helpful to detect pathways of the neurotropic agents suspected cattle.

___

  • Anonymus, 2002. Annex 3.5, Laboratory Method Collecti- on Twinning Project-Twinning Project Between and Ger- many. Project No: TR0203.05, KKGM, Ankara, Türkiye, pp: 99-155.
  • Astic L, Saucier D, Coulon P, Lafay F, Flamand A, 1993. The CVS strain of rabies virus a transneuronal tracer in the ol- factory system of mice. Brain Res, 619, 146-156.
  • Baer GM, Cleary WF, 1972. A model in mice for the pathoge- nesis and treatment of rabies. J Infect Dis, 125, 520-527.
  • Budras KD, McCarthy PH, Fricke W, Richter R, 2007. Anatomy of the Dog. An illustrated text, 5th edition, Hannover, Ger- many, pp: 57-96.
  • Charlton KM, Nadin-Davis S, Casey GA, Wandeler A, 1997. The long incubation period in rabies delayed progression of infection in muscle at the site of exposure. Acta Neurom- pathal, 94, 73-77.
  • Coulon PC, Derkin P, Kutera F, Lafay C, Prehaud A, 1989. Inva- sion of the peripheral nervous systems of adult mice by the CVS strain of rabies virus and its avirulent derivative. Av Ol J Virol, 63, 3550-3554.
  • Dean DJ, Abelseth MK, 1973. The fluorescent antibody test, in: Laboratory Techniques in Rabies, Eds: Kaplan MM, Kop- rowski H, third edition, World Health Organization, Gene- va, Italy, pp: 74-78.
  • Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JD, Wengenack JE, Rosenblatt FR, Cockerill III, Smith TF, 2006. Real-time PCR in clinical microbiology: Applica- tions for routine laboratory testing. Clin Microbiol Rev, 19, 165-256.
  • Jackson A, Reimer DL, 1989. Pathogenesis of experimental rabies in mice: An immunohistochemical study. Acta Neu- ropathol, 78, 159-165.
  • Karadağ H, Nur İH, 1989. Kılkeçisinde somatoafferent ve özel visceroefferent beyin sinirlerinde üzerinde makro- anatomik bir araştırma. UÜ Vet Fak Derg, 36, 260-272.
  • Katherine H, Taber PD, Peter L, Strick PhD and Robin A, Hur- leyMD, 2005. Rabies and the cerebellum: New methods for tracing circuits in the brain neuropsychiatry clinic. Neu- roscience, 17, 133-139.
  • Kelly RM, Strick PL, 2000. Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Met- hods, 103, 63-71.
  • Kelly RM, Strick PL, 2004. Macro-architecture of basal gang- lia loops with the cerebral cortex: use of rabies virus to re- veal multisynaptic circuits. Prog Brain Res, 143, 449-459.
  • Lanciego JL, Wouterlood FG Neuroanatomic tract-tracing methods beyond 2000: What’s now and next. J Neurosci Methods, 103, 1-2.
  • Lewis P, Thomas FY, Lentz L, 2000. Rabies virus entry at the neuromuscular junction in nerve-muscle cultures. Muscle & Nerve, 23, 20-730.
  • Mackay IM, 2007. Real-time PCR in microbiology: From di- agnosis to characterization. Caister Academic Press, Nor- wich, UK, pp: 458-481.
  • McElhinney L, Sawyer J, Finnegan CJ, Smith J, Fooks AR, 2002. Use of rapid cycle real-time PCR for the detection of rabies virus. In: Microbiology and Food Analysis; Rapid Cycle RT- PCR: Methods and Applications, Eds: Wittwer UC, Cockerill F, Springer-Verlag, Berlin, Germany, pp: 235-241.
  • Murphy FA, Bauer SP, Harrison AK, Winn JWC, 1973. Com- parative pathogenesis of rabies and rabies-like viruses: vi- ral infection and transit from inoculation site to the central nervous system. Lab Invest, 28, 361-376.
  • Shankar V, Dietzschold B, Koprowski H, 1991. Direct entry of rabies virus into the central nervous system without prior local replication. J Vir, 65, 2736-2738.
  • Tecirlioğlu S, 1977. Merkepte (Equus asinus L.) beyin sinir- lerinin (Nn. encephalici) makroskobik anatomisi üzerine araştırmalar. Ankara Üniv Vet Fak Derg, 24, 269-295.
  • Tıpırdamaz S, Eken E, Beşoluk K, 2000. Holstein ırkı sığırlar- da N. trigeminus üzerinde makro-anatomik araştırmalar. Eurasian J Vet Sci, 16, 45-50.
  • Ugolini G, 1995. Specificity of rabies virus as a transneuro- nal tracer of motor networks: Transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol, 356, 457-480.
  • Urman HK, 1977. Veteriner Patoloji. Cilt IV, Sinir Sistemi Pa- tolojisi. Ankara Üniversitesi Veteriner Fakültesi Yayınları, Ankara, Türkiye, pp: 130-148.
  • Wakeley PR, Johnson N, McElhinney LM, Marston D, Sawyer J, Fooks AR, 2005. Development of a real-time, taqman re- verse transcription-pcr lyssavirus assay for detection and differenti- ation of genotypes 1, 5, and 6. J Clin Microbiol, 43, 2786-2792.
  • Yoldas A, Tuzcu M, Özmen E, Yıgın A, Özmen M, Kul S, 2010. Sığırlarda kuduz hastalığının teşhisi ve kuduz virüsünün anatomik lokalizasyonunun real time PCR ile belirlenmesi üzerine karşılaştırmalı çalışmalar. Dicle Üniv Vet Fak Derg, 2, 42-50.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi