From interpretations to graphical representations: A case study investigation of covariational reasoning

Problem Durumu: Değişim kavramı- matematiksel nesnelerin nasıl ve birbirine göre ne oranda değiştiği- matematik, fen, mühendislik, işletme vb. Alanlarda öğrenciler için önemli bir ders olan kalkulüs’ün temelidir. Sürekli değişim içeren fonksiyonel ilişkilerde, bu değişimler hakkında uslamlama becerilerinin eksikliği öğrencilerin limit ve türev gibi temel kalkulüs kavramlarını öğrenmede zorluklar yaşamasına neden olmaktadır. Öğrencilerin “değişim oranı” kavramını anlamalarının limit, türev, integral gibi diğer kalkulüs kavramlarını anlamaları üzerindeki etkilerini araştıran bir çok çalışma yapılmış olmasına rağmen, öğrencilerin sürekli değişim içeren fonksiyonel ilişkilerde nasıl uslamlama yaptıkları konusunda yeteri kadar bilgi yoktur. Bu türden uslamlama bir ilişki içerisinde birbirine göre eşzamanlı olarak değişen iki değerin koordine edilmesindeki bilişsel aktiviteler olarak tanımlanır ve “kovaryasyonal uslamlama” olarak adlandırılır. Diğer bir tanımı ise iki değişkenin eşzamanlı değişimlerinin zihinde tutulan sürekli bir görüntüsü dür. Bu türden bir uslamlama sürekli değişim içeren dinamik olaylardaki değişim örüntülerini analiz etme, yorumlama ve göstermede zorunlu bir bilişsel aktivitedir. Bu bilişsel aktivite verilen fonksiyonel ilişkilerde her bir girdi ve karşılık gelen çıktıyı bulmak için yapılan hesaplamaların yerine bir çok girdi ve çıktı eşlerinin eşzamanlı olarak zihinde canlandırılması ve sürecin bir bütün olarak zihinde resmedilmesi yeteneğini içermektedir. Araştırmanın Amacı: Bu çalışmanın amacı başarılı üniversite öğrencilerinin kovaryasyonal uslamlama yeteneklerinin bir özel durum çalışması ile tanımlanması, açıklanması ve analiz edilmesidir. Bir başka deyişle, bu çalışma başarılı bir üniversite öğrencisinin verilen bir fonksiyon durumunda değişkenlerin eşzamanlı değişimlerini yorumlarken kullandığı uslamlama yöntemleri ve bu yorumlardan yola çıkarak oluşturduğu grafik gösterimleri hakkında derin ve detaylı bir açıklama getirmeyi amaçlamaktadır.

Bir özel durum araştırması: Yorumlamadan grafiksel gösterime kovaryasyonal uslamlama

Problem Statement: The idea of change — both how things change and at what rate things change with respect to each other — is fundamental to a study of calculus, which is a critical course for students majoring in mathematics, sciences, engineering, business and several other majors. A lack of ability to reason about change in continuously changing functional relationships may cause difficulties in learning basic calculus concepts such as limits and derivatives. Despite a variety of research studies that emphasized the effects of students’ understanding of rate of change on understanding of calculus concepts such as limits, derivatives, and integrals, there is little information about how college students reason about continuously changing functional relationships. Purpose of Study: The aim of this study is to explore, describe and analyze college students’ covariational reasoning abilities. More specifically, this study investigates and provides a “thick” description, or which explains a behavior and its context, of how a college student uses understanding and reasoning to interpret a functional situation and uses these interpretations to demonstrate the covariation of two variables in graphical representation. order to comprehensively understand his covariational reasoning. Data were obtained from a detailed examination of student’s thinking and reasoning processes through the task based in-depth clinical interviews. Data obtained from students’ verbal expressions and graphical representations were analyzed in light of the theoretical lens. The “Covariation Framework” provided a skeletal structure for the description and interpretation of findings. Findings and Results: Analysis of data disclosed that conceiving of a functional situation statically leads to difficulties in coordinating the continuously changing rate of change over the entire domain. Students’ strong procedural tendency hinders meaningful interpretations and reasoning. Lack of transformational reasoning appears to prevent forming an image of the dynamically changing event and foster dependence on the procedural steps. Reasoning based on irrelevant details and arguments leads to either erroneous or pseudo-analytical conclusions about the simultaneous changes of two variables. Conclusion and Recommendations: Instead of introducing the concept of function as correspondence, which is more traditional and concentrated around the application of certain rules and formulas, introducing the functions as covariation will be more helpful for students to develop a better conceptual understanding. Utilizing computer technology such as dynamic software in classroom instruction may provide more visual representations in order to enhance students’ conceptualization of the changing nature of functions.

___

  • Bogdan, R. C., & Biklen, S. K. (1998). Qualitative Research for Education: An Introduction to Theory and Methods. (3rd ed.). Boston: Allyn & Bacon.
  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23, 247-285.
  • Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. In E.Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in Collegiate Mathematics Education, 1, (7), (pp. 115-162). Providence, RI: American Mathematical Society.
  • Carlson, M., Jacobs, S., Coe, T., Larsen, S. and Hsu, E. (2002) "Applying Covariational Reasoning While Modeling Dynamic Events: A Framework and a Study". Journal for Research in Mathematics Education. Vol. 33, No. 5, 352-378.
  • Carlson, M., Larsen, S., & Jacobs, S. (2001). An investigation of covariational reasoning and its role in learning the concepts of limit and accumulation. Proceedings of the Twenty-Third Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Vol. 1, (pp.145-153), Snowbird, UT: PME-NA.
  • Carlson, M., & Oehrtman, M. (2005). Key aspects of knowing and learning the concept of function. In A. Selden & J. Selden (Eds.), MAA Online, Research Sampler.
  • Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86
  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95-126). Boston: Kluwer Academic Publishers.
  • Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA Notes, 25, 85-106.Washington, DC: Mathematical Association of America.
  • Hauger, G. S. (1995). Rate of change knowledge in high school and college students. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco (April).
  • Hauger, G. S. (1997). Growth of knowledge of rate in four precalculus students. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago (March 24-28).
  • Kaput, J. J. (1992). Patterns in students’ formalization of quantitative patterns. In G. Harel & E. Dubinsky (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy, MAA Notes, Vol. 25 (pp. 290-318). Washington, DC: Mathematical Association of America.
  • Leinhardt, G., Zaslavsky, O. & Stein, M. S. (1990). Functions, Graphs and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 1, 1-64.
  • Merriam, S. B. (1998). Qualitative research and case study: Applications in education, Revised and expanded from case study research in education. Jossey-Bass Publishers, San Francisco.
  • Monk, S. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA Notes, 25 (pp. 175-194). Washington, DC: Mathematical Association of America.
  • Monk, S., & Nemirovsky, R. (1994). The case of Dan: Student construction of a functional situation through visual attributes. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education. I. CBMS Issues in Mathematics Education (pp. 139-168). Providence, RI: American Mathematical Society.
  • Noble, T., Nemirovsky, R., Wright, T., & Tierney, C. (2001). Experiencing change: the mathematics of change in multiple environments. Journal for Research in Mathematics Education, 32(1), 85–108.
  • Orton, A. (1983). Students’ understanding of integration. Educational Studies in Mathematics, 14, 1-18.
  • Saldanha, L., & Thompson, P. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berensen & W. N. Coulombe (Eds.). Proceedings of the Annual Meeting of the Psychology of Mathematics Education North America. Raleigh, NC. Stake, R. (1995). The art of case research. Thousand Oaks, CA: Sage Publications.
  • Tall, D. O. (1997) Functions and Calculus. In A. J. Bishop et al (Eds.), International Handbook of Mathematics Education, 289–325, Dordrecht: Kluwer.
  • Thompson, P. W.(1994a). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229- 274.
  • Thompson, P. W.(1994b). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate Mathematics Education. I. CBMS Issues in Mathematics Education (pp. 21-44). Providence, RI: American Mathematical Society.
  • Yeşildere, S., & Türnüklü, E. (2008). An investigation of the components affecting knowledge construction processes of students with differing mathematical power. Egitim Arastirmalari-Eurasian Journal of Educational Research, 31, 151-169.