Science learning experiences in kindergarten and children’s growth in science performance in elementary grades

Bu çalışmanın amacı, anaokulunda verilen erken bilim eğitimi deneyimlerinin, çocukların ilköğretim yıllarında fen bilgisi alanında gösterdiği performansın gelişmesi üzerindeki etkisini incelemektir. Bu çalışmada Erken Çocukluk Boylamsal Araştırması – Anaokulu (ECLS-K) verileri kullanılmıştır. Fırsat-Eğilim Modellemesi kullanılarak araştırma değişkenleri arasındaki ilişkiler kuramsal olarak modellenmiş ve bu model Gizil Büyüme Eğrisi Analizi ile test edilmiştir. Sonuçlar, öncül değişkenlerin (cinsiyet ve SED) ve eğilim (yetenek ve motivasyon) değişkenlerinin çocukların fen bilgisi performanslarının anlamlı yordayıcıları olduğunu göstermiştir. Bununla beraber, anaokulunda sağlanan bilim öğrenme fırsatlarının, çocukların üç ile sekizinci sınıflar arasında fen bilgisi dersinde gösterdikleri performanstaki gelişmenin anlamlı yordayıcıları olmadığı bulunmuştur.

Anaokulunda sağlanan bilim öğrenme deneyimlerinin çocukların ilköğretim fen bilgisi derslerindeki performanslarına etkisi

The present study aims to examine the influence of early science experiences in kindergarten on children’s growth in science performance in elementary grades. The data for this study came from the Early Childhood Longitudinal Study – Kindergarten cohort (ECLS-K). A model illustrating the relationships between the early learning experiences and later academic performance in science was developed using the opportunity-propensity framework and the model was tested using the latent growth curve modeling technique. Results indicated that the antecedent (gender and socio economic status) and propensity (aptitude and motivation) variables predicted children’s science performance. However, the science learning opportunities in kindergarten did not predict children’s growth in science performance from third grade to eighth grade.

___

  • American Association for the Advancement of Science. (1995). Benchmarks for science literacy. [online]. Available: www.project2061.org.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.
  • Bodovski, K., & Farkas, G. (2007). Do instructional practices contribute to inequality in achievement? The case of mathematics instruction in kindergarten. Journal of Early Childhood Research, 5(3), 301-322.
  • Bodrova, E. (2008). Make-believe play versus academic skills: a Vygostkian approach to today’s dilemma of early childhood education. European Early Childhood Education Research Journal, 16(2), 357-369.
  • Brecht, M., & Schmitz, D. (2008). Rules of plasticity. Science, 319(4), 39-40.
  • Bredekamp, S. (1987). Developmentally appropriate practice in early childhood programs serving children from birth through age 8. Washington, DC: NAEYC.
  • Bredekamp, S. (2006). Staying true to our principles. Journal Educating Young Children, 12(2), 21-24.
  • Büyüktaşkapu, S., Çeliköz, N., & Akman, B. (2012). Yapılandırmacı Bilim Öğretim Programının 6 Yaş Çocuklarının Bilimsel Süreç Becerilerine Etkisi. Eğitim ve Bilim, 37(165), 275-292.
  • Byrnes, J. P., & Miller, D. C. (2007). The relative importance of predictors of math and science achievement: An opportunity–propensity analysis. Contemporary Educational Psychology, 32, 599–629.
  • Byrnes, J. P., & Wasik, P. A. (2009). Factors predictive of mathematics achievement in kindergarten, first and third grades: An opportunity–propensity analysis. Contemporary Educational Psychology, 34, 167-183.
  • Carey, S. (2004). Bootstrapping and the dev elopment of concepts. Dedalus, Winter, 59-68.
  • Carey, S., & Spelke, E. S. (1994). Domain-specific knowledge and conceptual change. In L.A.
  • Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture, (pp. 169-201). New York: Cambridge University Press.
  • Connor, C. M., Jakobsons, L. J.,Crowe, E. C., & Meadows, J. G. (2009). Instruction, student engagement, and reading skill growth in reading first classrooms. The Elementary School Journal. 109 (3), 221-250.
  • Early, D. M., Iruka, I. U., Ritchie, S., Barbarin, O. A., Winn, D. C., Crawford, G. M., Frome, P. M. et al., (2010). How do pre-kindergarteners spend their time? Gender, ethnicity and income as predictors of experiences in pre-kindergarten classrooms. Early Childhood Research Quarterly, 25, 177-193.
  • Ekinci-Vural, D., & Hamurcu, H. (2008). Okul Öncesi Ögretmen Adaylarinin Fen Ögretimi Dersine Yönelik Öz Yeterlik İnançları ve Görüşleri. İlkögretim Online, 7(2), 456-467.
  • Elkind, D. (1987). Miseducation : Preschoolers at risk. Random House: New York. French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138.
  • Gelman, R., & Brenneman, K. (2004). Science learning pathways for young children. Early Childhood Research Quarterly, 19(1), 150-158.
  • Ginsburg, H. P., & Golbeck, S. L. (2004). Thoughts on the future of research on mathematics and science learning and education. Early Childhood Research Quarterly, 19(1), 190–200.
  • Greenes, C. Ginsburg, H. P., & Balfanz, R. (2004). Big Math for little kids. Early Childhood Research Quarterly, 19(1), 159-166.
  • Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccilo, J. (2009). Science in the preschool classroom: A programmatic research agenda to improve science readiness. Early Education and Development, 20(2), 238-264.
  • Gresham, F. M., & Elliott, S. N. (1990). Social skills rating system (Elementary Scale A). Circle Pines, MN: American Guidance Service, Inc.
  • Güler, D., & Bıkmaz, F. H. (2002). Anasınıflarda Fen Etkinliklerinin Gerçekleştirilmesine İlişkin Öğretmen Görüşleri. Eğitim Bilimleri ve Uygulama, 1(2), 249-267.
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River, NJ: Pearson.
  • Hancock, G. R., & Lawrence, F. R. (2006). Using latent growth curve models to evaluate longitudinal change. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course, (pp. 171-196). Greenwich, CT: IAP.
  • Hancock, G. R., & Mueller, R. O. (2001). Rethinking construct reliability with within latent variable systems. In R. Cudek, S du Toit, & D. Sorbom (Eds.), Structural equation modeling: Present and future – A Festschrift in honor of Karl Joreskog, (pp. 195-216). Lincolnwood, IL: Scientific Software International.
  • Hatch, J. A. (2002). Accountability shovedown: Resisting the standards movement in early childhood education. Phi Delta Kappan, 83(6), 457-462.
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
  • Huinker, D., & Madison, S. K. (1997). Preparing efficacious elementary teachers in science and mathematics: The influence of method courses. Journal of Science Teacher Education, 8(2), 107-126.
  • Hyson, M. (2003). Putting early academics in their place. Educational Leadership, 60(7), 20-23.
  • Jones, K. K., & Byrnes, J. P. (2006). Characteristics of students who benefit from high quality mathematics instruction. Contemporary Educational Psychology, 31, 328–343.
  • Kallery, M. (2004). Early years teachers’ late concerns and perceived needs in science: an exploratory study. European Journal of Teacher Education, 27(2), 147-165.
  • Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1, 113-129.
  • Lawson, A. E. (2003). The neurological basis of learning, development and discovery: Implications for science and mathematics instruction. New York: Kluwer.
  • Lindsey, G. (1997). Brain research and implications for early childhood education. Childhood Education, 72(2), 97-100.
  • McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58(1), 110-133.
  • Morrell, P., & Carroll, J. B. (2003). An extended examination of preservice elementary teachers’ science teaching self-efficacy. School Science and Mathematics, 103(5), 246-251.
  • National Assessment Governing Board [NAGB]. (1996). Science Framework for the 1996 National Assessment of Educational Progress. Washington, DC: Government Printing Office.
  • National Center for Education Statistics [NCES]. (2002). Early childhood longitudinal study Kindergarten class of 1998-99 9 (ECLS-K), psychometric report for Kindergarten through first grade. (NCES Publication No. 2002–05). Washington, DC: U.S. Department of Education.
  • National Center for Education Statistics [NCES]. (2006). Teachers’ qualifications, instructional practices, and reading and mathematics gains of kindergartners: Research and development report. (NCES Publication No. 2006–031). Washington, DC: U.S. Department of Education.
  • National Center for Education Statistics [NCES]. (2009). Early childhood longitudinal study Kindergarten class of 1998-99 9 (ECLS-K), psychometric report for the eighth grade. (NCES Publication No. 2009–02). Washington, DC: U.S. Department of Education.
  • National Research Council [NRC]. (1996). National science education standards. Washington, DC: National Academy Press.
  • Opfer, J. E., & Siegler, R. S. (2004). Revisiting preschoolers’ living things concept: A microgenetic analysis of conceptual change in basic biology. Cognitive Psychology, 49, 301-332.
  • Palmer, D. (2006). Durability of changes in self-efficacy of preservice primary teachers. International Journal of Science Education, 28(6), 655-671.
  • Patrick, H., Mantzicopoulos, P., & Samarapungavan, A. (2009). Motivation for learning science in kindergarten: Is there a gender gap and does integrated inquiry and literacy instruction make a difference. Journal of Research in Science Teaching, 46(2), 166- 191.
  • Patrick, H., Mantzicopoulos, P., Samarapungavan, A., & French, B. F. (2008). Patterns of young children’s motivation for science and teacher-child relationship. The Journal of Experimental Education, 76(2), 121- 144.
  • Piaget, J., & Inhelder, B. (2000). The psychology of childhood (H. Weaver, Trans.). (Original work published 1928). New York, NY: Basic Books. (Original work published 1966).
  • Ramey-Gassert, L. (1997). Learning science beyond the classroom. The Elementary School Journal, 97(4), 433-450.
  • Rushton, S., & Larkin, E. (2001). Shaping the learning environment: Connecting developmentally appropriate practices to brain research. Early Childhood Education Journal, 29(1), 25-33.
  • Saçkes, M., Akman, B., & Trundle, K. C. (2012). Okulöncesi Öğretmenlerine Yönelik Fen Eğitimi Dersi: Lisans Düzeyindeki Öğretmen Eğitimi İçin Bir Model Önerisi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 6(2), 1-26.
  • Saçkes, M. Flevares, L. M., Gonya, M., & Trundle, K. C. (2012). Preservice early childhood teachers’ sense of efficacy for integrating mathematics and science: Impact of a methods course. Journal of Early Childhood Teacher Education, 33(4), 349-364.
  • Saçkes, M., Trundle, K. C., Bell, R. L., & O’Connell, A. A. (2011). The influence of early science experience in kindergarten on children’s immediate and later science achievement: Evidence from the Early Childhood Longitudinal Study. Journal of Research in Science Teaching, 48(2), 217-235.
  • Spodek, B., & Saracho, O. N. (2003). “On the shoulders of giants”: Exploring the traditions of early childhood education. Early Childhood Education Journal, 31(1), 3-10.
  • Tao, Y., Oliver, M., & Venville, G. (2012). Long-term outcomes of early childhood science education: Insights from a cross-national comparative case study on conceptual understanding of science. International Journal of Science and Mathematics Education, 10(6), 1269-1302.
  • Tu, T. (2006). Preschool science environment: What is available in a preschool classroom? Early Childhood Education Journal, 33(4), 245-251.
  • Watters, J. J., Diezmann, C. M., Grieshaber, S. J., & Davis, J. M. (2000). Enhancing science education for young children: A contemporary initiative. Australian Journal of Early Childhood, 26(2), 1-7.
  • Varol, F. (in press): What they believe and what they do. European Early Childhood Education Research Journal. DOI:10.1080/1350293X.2012.677309.
  • Xue, Y., & Meisels, S. J. (2004). Early literacy instruction and learning in kindergarten: Evidence from the Early Childhood Longitudinal Study – Kindergarten Class of 1998-1999. American Educational Research Journal, 41(1), 191-229.
  • Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99–149.