Following students' ıdeas: How much to let go?

Bu makalenin amacı, şu iki soruya cevap aramaktır: Bir öğretmen problem çözme sürecinde öğrencilerin alternatif fikirlerini takip ederken neler olur? Problem çözme sürecini öğrencilere bırakmanın limiti nedir? On beş yıllık öğretmenlik tecrübesi olan bir öğretmen, profesyonel bir gelişim programı çerçevesinde pedagojisini argüman-tabanlı yaklaşıma göre değiştirmeye çalışmıştır. Bu makale, reel sayılar ünitesinin işlenişi sırasında kaydedilen videolardan seçilen bir dersten anlık bir fotoğrafı yansıtmaktadır. Veriler, temelleri karşılıklı etkileşim yaratma, problem çözme sürecini kontrol etme ve bağlantı kurma üzerine kurulu bir gözlem matrisi kullanılarak analiz edilmiştir. Sonuçlar, geleneksel öğretim yöntemindeki güvenli bölgesi nden kaynaklı olarak, öğrencilerin kendi problem çözme süreçlerini oluşturmalarına ve matematiksel anlamalarını açıklamalarına izin verme konusunda öğretmenin ikilemde kaldığını göstermiştir. Pedagoji değişiminde bu tür bir ikilem matematiği sadece algoritma olarak gören bakış açısından, matematiği insan ürünü olarak gören bir bakış açısına geçiş sürecini engellemektedir.

Öğrencilerin fikirlerini takip etme: Nereye kadar?

The purpose of this study was to find answers to the following two questions: What happens when a teacher follows his students alternative ideas in his mathematics classroom? What is the limit of letting go in a problem solving process? A teacher with 15 years of mathematics teaching experience tried to modify his pedagogical practices towards an argument-based approach as part of a professional development project. This paper is a snapshot of a lesson selected from a number of videos recorded in his classroom when teaching real numbers unit . The data were analyzed using an observation matrix whose bases are creating dialogic interaction, controlling problem solving process and making connections. The results revealed that the teacher hesitated to let the students follow their own problem solving process and explain their mathematical understanding because of his comfort zone in traditional way of teaching. This type of hesitation in changing pedagogy blocks shifting from an algorithmic view of mathematics to the mathematics as a constructed action.

___

  • Ball, D.L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
  • Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann Educational Books.
  • Brendefur, J. & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers’ conceptions and practices. Journal of Mathematics Teacher Education, 3, 125-153.
  • Brodie, K. (2011). Working with learners’ mathematical thinking: Towards a language of description for changing pedagogy. Teaching and Teacher Education, 27, 174-186.
  • Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal of Research in Mathematics Education, 28, 258–277.
  • Cuban, L. (1993). How teachers taught: Constancy and change in American classrooms, 1890-1990 (2nd ed.). New York, NY: Teachers College Press.
  • Edwards, D. & Mercer, N. (1987). Common knowledge: The growth of understanding in the classroom. London: Routledge.
  • Ernest, P. (1998). Social constructivism as a philosophy of mathematics. Albany, NY: State of University of New York Press.
  • Esterberg, K.G. (2002). Qualitative methods in social research. McGraw-Hill, Boston.
  • Gunel, M. (2006). Investigating the impact of teachers’ practices of inquiry and non-traditional writing on students’ academic achievement of science during longitudinal professional development program. Unpublished PhD Dissertation, Iowa State University, Ames.
  • Hoekstra, A., Brekelmans, M., Beijaard, D., & Korthagen, F. (2009). Experienced teachers’ informal learning: Learning activities and changes in behavior and cognition. Teaching and Teacher Education, 25, 663–673.
  • Johnson, E.M.S. & Larsen, S.P. (2012). Teacher listening: The role of knowledge of content and students. Journal of Mathematical Behavior, 31, 117-129.
  • Lampert, M. (2001). Teaching problems and the problems of teaching. New Haven: Yale University Press.
  • Lampert, M. (2010). Learning teaching in, from, and for practice: What do we mean? Journal of Teacher Education 61(1-2), 21-34.
  • Leikin, R. & Dinur, S. (2007). Teacher flexibility in mathematical discussion. Journal of Mathematical Behavior, 26, 328-347.
  • Leikin, R. & Kawass, S. (2005). Planning teaching an unfamiliar mathematics problem: The role of teachers’ experience in solving the problem and watching pupils solving it. Journal of Mathematical Behavior, 24, 253-274.
  • Martin, A. M., & Hand, B. (2009). Factors affecting the implementation of argument in the elementary science classroom. A longitudinal case study. Research in Science Education, 39, 17-38.
  • McMillan, J. & Schumacher, S. (1997). Research in education: A conceptual introduction. (4th ed.). New York: Addison Wesley Longman, Inc.
  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Obara, S. & Sloan, M. (2009). Classroom experiences with new curriculum materials during the implementation of performance standards in mathematics: A case study of teachers coping with change. International Journal of Science and Mathematics Education, 8, 349-372.
  • Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London: Routledge.
  • Sherin, M. G. (2002). When teaching becomes learning. Cognition and Instruction, 20(2), 119-150.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(4), 4-14.
  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
  • Simon, M. A. (1997). Developing new models of mathematics teaching: An imperative for research on mathematics teacher development. In E. Fennema & B. S. Nelson (Eds.), Mathematics teachers in transition (pp. 55-86). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Treagust, D. (2007). General instructional methods and strategies. In S. Abell, & N. Lederman (Eds.) Handbook on research in science education (pp. 373–391). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.
  • Walshaw, M. & Anthony, G. (2008). The teacher’s role in classroom discourse: A review of recent research into mathematics classrooms. Review of Educational Research, 78 (3), 516-551.
  • Wilson, M. & Goldenberg, M. P. (1998). Some conceptions are difficult to change: One middle school mathematics teacher’s struggle. Journal of Mathematics Teacher Education, 1, 269-293.
  • Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation. Journal of Mathematical Behavior, 21, 423-440.
Eğitim ve Bilim-Cover
  • ISSN: 1300-1337
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Türk Eğitim Derneği (TED) İktisadi İşletmesi