Consistency of Students’ Ideas about the Concept of Rate across Different Contexts

Bu çalışma, 11. sınıf öğrencilerinin hız kavramı hakkındaki düşüncelerinin tutarlılığını, bir cismin hızı ile kimyada reaksiyon hızı kavramları için araştırmaktadır. Çalışmaya üç farklı okuldaki 11. sınıf öğrencilerinden toplam 200 kişi katılmıştır. Veriler, reaksiyon hızı ve kinematik konuları anlatıldıktan sonra toplanmıştır. Bu çalışmadaki veriler, öğrencilerin tanısal altı soruya verdikleri cevapları ve öğrencilerle yapılan görüşmeleri içermektedir. Sonuçlar, öğrencilerin hız kavramı hakkındaki düşüncelerinin tutarlılığının değişik içerik ve alanlar arasında sınırlı olduğunu göstermiştir. Sonuçlar, öğrencilerin hız kavramı hakkındaki düşüncelerinin tutarlılığının soruların format ve içeriğine bağlı olduğunu göstermiştir. Veri tablosu verilip öğrencilerin bu verinin grafiğini çizmeleri istendiğinde, öğrencilerin doğru cevabı vermeye daha yatkın olduğu gözlemlenmiştir. Öğrencilerin hız kavramı konusundaki düşüncelerini çok geniş bir alana sahip bir içerikte uyumlu olarak uyguladıklarını gösteren çok az veri vardır. Öğretim programlarını tasarlarken öğrencilerin bilişötesi beceri geliştirmelerini sağlayacak stratejiler önerilmiştir. Bu bakımdan farklı branşlardaki öğretmenler fizik, kimya, biyoloji veya matematikte bağlantılı kavramları öğretirken birbirleriyle işbirliği yapabilirler.

Öğrencilerin Hız Kavramı Hakkındaki Düşüncelerinin Farklı Bağlamlardaki Tutarlılığı

This study investigates consistency of 11th grade students’ ideas about the concept of rate across different contexts namely velocity of an object in physics and rate of reaction in chemistry. The subjects of the study were 200 11th grade high school students in three schools. Data were collected after formal teaching on reaction rates and kinematics. Data sources included students’ responses to six diagnostic questions and interviews. The results suggest that consistency of students’ ideas about rate concept across different contexts and domains are limited. The results revealed that students’ ideas about the concept of rate depend to some extent on the format and contextual features of the questions presented. It is observed that students are more likely to give a correct answer when data are presented on a table rather than on a graph. There is very little evidence showing that students coherently apply their ideas about rate concept across a wide range of contexts. Implications for designing instruction that would provide students with opportunities to develop metacognitive skills are suggested. In this respect, teachers from different disciplines can cooperate with each other when they teach closely related concepts in biology, chemistry, physics or mathematics.

___

  • Adams, D. D., & Shrum, J. W. (1990). The effects of microcomputer-based laboratory exercises on the acquisition of line graph construction and interpretation skills by high school biology students. Journal of Research in Science Teaching, 27(8), 777-787.
  • Bektasli, B. (2006). The relationships between spatial ability, logical thinking, mathematics performance and kinematics graph interpretation skills of 12th grade physics students. Unpublished Doctoral Dissertation. The Ohio State University, USA. Bektasli, B., & Cakmakci, G. (2011). Rate Concept Achievement Test (RCAT). Retrieved 29 June, 2011, from: http://yunus.hacettepe.edu.tr/~cakmakci/rcat.pdf Beichner, R. J. (1990). The effect of simultaneous motion presentation and graph generation in a kinematics lab. Journal of Research in Science Teaching, 27(8), 803-815.
  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62, 750-762.
  • Berg, C. A., & Phillips, D. G. (1994). An investigation of the relationship between logical thinking structures and the ability to construct and interpret line graphs. Journal of Research in Science Teaching, 31(4), 323-344.
  • Berlin, D. F., & White, A. L. (1994). The Berlin-White integrated science and mathematics model. School Science and Mathematics, 94(1), 2-4.
  • Brasell, H.M., & Rowe, B.M. (1993). Graphing skills among high school physics students. School Science and Mathematics, 93(2), 63-69.
  • Brown, J.S., Collins, A., & Duguid, P (1989). Situated cognition and the culture of learning. Educational Researcher, 18(l), 32-42.
  • Cachapuz A. F. C. & Maskill R., (1987). Detecting changes with learning in the organization of knowledge: use of word association tests to follow the learning of collision theory, International Journal of Science Education. 9, 491-504.
  • Cakmakci, G., Leach, J & Donnelly, J. (2006). Students’ ideas about reaction rate and its relationship with concentration or pressure. International Journal of Science Education, 28(15), 1795-1815.
  • Cakmakci, G. & Aydogdu, C. (2011). Designing and evaluating an evidence-informed instruction in chemical kinetics. Chemistry Education Research and Practice, 12(1), 15-28.
  • Cakmakci, G. (2010). Secondary school and undergraduate students’ alternative conceptions of chemical kinetics. Journal of Chemical Education, 87(4), 449-455.
  • Cakmakci, G. (2009). Emerging issues from textbook analysis in the area of chemical kinetics. Australian Journal of Education in Chemistry, 70, 31-38.
  • Calik, M., Kolomoc, A., & Karagolge, Z. (2010). The effect of conceptual change pedagogy on students’ conceptions of rate of reaction. Journal of Science Education & Technology, 19(5), 422-433, diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age. Hillsdale, N.J: Erlbaum. diSessa, A. A. (2002). Why “conceptual ecology” is a good idea. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 29-60): Dortrecht: Kluwer.
  • Engel Clough, E. & Driver, R. (1986). A study of consistency in the use of students’ conceptual frameworks across different task contexts. Science Education, 70(4), 24.
  • Erduran, S., & Duschl, R. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40(1), 105-138.
  • Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25(1), 69-96. Goldberg & Anderson, (1989).Student difficulties with graphical representations of negative values of velocity. The Physics Teacher, 27 (4), 254-260.
  • Hackling M. W. and Garnett P. J., (1985). Misconceptions of chemical equilibrium, European Journal of Science Education. 7, 205-214.
  • Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning. Studies in Science Education, 22,(1), 1-41.
  • Johnstone, A. H. (1982). Macro-and microchemistry. School Science Review, 64(227), 377-379.
  • Justi, R. (2002). Teaching and learning chemical kinetics. In J. K. Gilbert and O. De Jong and R. Justi and D. Treagust and J. H. Van Driel (Eds.), Chemical Education: Towards Research-based Practice (pp. 293-315).
  • Dordrecht: Kluwer. Kozhevnikov, M., Hegarty, M., & Mayer, R. (1999). Students’ use of imagery in solving qualitative problems in kinematics. (ERIC Document Reproduction Service No. ED433239). Kwen, B. H. (1996). Consistency and inconsistency in A level students’ understandings of a number of chemical reactions. Research in Science and Technological Education, 14(1), 55-66.
  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 122-130.
  • McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503-513.
  • MEB (Turkish Ministry of National Education) (1998). Biology, Chemistry and Physics Teaching Programs. Ankara: Milli Eğitim Bakanlığı Eğitimi Araştırma ve Geliştirme Dairesi Başkanlığı. MEB (Turkish Ministry of National Education) (2007). Biology, Chemistry and Physics Curricula, Retrieved 15 April, 2010, from http://ttkb.meb.gov.tr/ogretmen/ Nakhleh, M.B. (2001). Theories or fragments? The debate over learners’ naïve ideas about science. Journal of Chemical Education, 78(8), 1107.
  • Ozdemir, G. & Clark, D.B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351-361
  • Palmer, D. (1997). The effect of context on students’ reasoning about forces. International Journal of Science Education, 19(6), 681-696.
  • Pekdağ, B. & Le Maréchal, J.-F. (2010). An explanatory framework for chemistry education: The two-world model. Education and Science, 35(157), 84-99.
  • Quilez J. & Solaz J. J. (1995). Students’ and teachers’ misapplication of Le Châtelier’s principle: implications for the teaching of chemical equilibrium, Journal of Research in Science Teaching. 32, 939-957.
  • Rodrigues, S., & Bell, B. (1995). Chemically speaking: a description of student-teacher talk during chemistry lessons using and building on student’s experiences. International Journal of Science Education, 17(6), 797-809.
  • Sozbilir, M., Pinarbasi, T., & Canpolat, N. (2010). Prospective chemistry teachers’ conceptions of chemical thermodynamics and kinetics. Eurasia Journal of Mathematics, Science and Technology Education, 6(2), 111-121.
  • Stavy, R., Tsamir, P., & Tirosh, D. (2002). Intuitive rules: The case of “More A-More B”. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 217-231). London: Kluwer Academic Publishers. Taber, K. S. (2000). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22(4), 399-417.
  • Tastan, O., Yalcinkaya, E, & Boz, Y. (2010). Pre-service chemistry teachers’ ideas about reaction mechanism. Journal of Turkish Science Education, 7(1), 47-60
  • Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181-234). Albany, NY: SUNY Press. Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
  • Trowbridge, D.E. & McDermott, L.C. (1980). Investigation of student understanding of the concept of velocity in one dimension. American Journal of Physics 48 (12), 1020-1028 Trowbridge, D.E. & McDermott, L.C. (1981). Investigation of student understanding of the concept of acceleration in one dimension. American Journal of Physics 49 (3), 242-253.
  • Van Driel J. H. (2002). Students’ corpuscular conceptions in the context of chemical equilibrium and chemical kinetics, Chemistry Education Research and Practice in Europe. 3, 201-213.. White, R. T., & Gunstone, R. F. (1992). Probing understanding. London: Falmer.