Cürufa Olan Bakır Kayıplarında Farklı Kroze Kullanımının Etkisi

Bakır işletmelerinde ergitme aşamasında cürufa olan bakır kayıpları sektördeki önemli problemlerden biridir. Bu çalışmada, Eti Bakır İşletmelerinden (EBİ) temin edilen flaş fırın cürufu ve flaş fırın matı eşit miktarlarda alınarak farklı oranlarda kolemanit (2CaO?3B2O3?5H2O) ilavesi (%0, %2, %4 ve %6) ile karıştırılıp alumina (Al2O3) krozelerde 1250oC'de ve azot atmosferi altında 2 saat boyunca ergitme deneylerine tabi tutulmuştur. Böylece, alümina kroze (AK) kullanılan deneylerde cürufa olan bakır kaybı oranları gözlemlenmiş ve aynı deneysel koşullarda silika kroze (SK) kullanılarak yapılmış deneylerden elde edilen değerler ile karşılaştırılmıştır. Ayrıca, FactSage programı yardımıyla deneyler sonucunda oluşan cüruflara ait viskozite ile sıvılaşma sıcaklığı değerleri hesaplanmış ve ilk katılaşan faz ortaya çıkarılmıştır. Deneysel bulgular kolemanit ilavesinin flaş fırın cürufuna kaybedilen bakır miktarının her iki tip kroze kullanılması durumda da önemli oranda azaltılabildiğini göstermiştir

Effect of Different Crucible Usage on Copper Losses to Slag

Copper losses to the slag in the smelting stage are one of the major problems in copper production factories. In this study, flash furnace slag and flash furnace matte provided by Eti Copper Co. (EBI) were melted at 1250oC for 2 hours under the nitrogen atmosphere in alumina crucibles with different proportions (0%, 2%, 4% and 6%) of colemanite (2CaO·3BO3·5H2O) addition. The amount of the copper losses to slag in alumina crucibles was observed and also compared with the values obtained from the same experimental conditions by using silica crucible. In addition, liquidus temperature and viscosity of the resultant slags were calculated and the first precipitates were revealed by using FactSage model program. According to the results, the level of copper losses to the slag was significantly reduced by the addition of colemanite for both types of the crucible

___

  • 1. Schlesinger, M. E., King, M. J., Davenport, A. W., Sole, K. C., 2011. Extractive Metallurgy of Copper, 5th. edition, Elsevier, Oxford, UK.
  • 2. Gorai, B., Jana R. K., 2003. Characteristics and Utilisation of Copper Slag—a Review, Resources Conservation & Recycling, 39(4), 299–313.
  • 3. Ruşen, A., Geveci, A., Topkaya, Y. A., Derin, B., 2012. Investigation of Effect of Colemanite Addition on Copper Losses in Matte Smelting Slag, Canadian Metallurgical Quarterly, 51(2), 157–169.
  • 4. Shen H., Forssberg, E., 2003. An Overview of Recovery of Metals From Slags, Waste Management, 23(10), 933–949.
  • 5. Imris, I., 2003. Copper Losses in Copper Smelting Slags, Metallurgical and Materials Processing: Principles and Technologies (Yazawa International Symposium), 359–373, San Diego.
  • 6. Imris, I., Sánchez, M., Achurra, G., 2005. Copper Losses to Slags Obtained from the El Teniente Process, Mineral Processing Extractive Metallurgy, 114, 135–140.
  • 7. Ruşen, A., Geveci, A., Topkaya, Y. A., Derin, B., 2016. Effects of Some Additives on Copper Losses to Matte Smelting Slag, Journal of Metals, 68(9), 2323-2331.
  • 8. Sridhar, R., Toguri, J. M., Simeonov S., 1997. Copper Losses and Thermodynamic Considerations in Copper Smelting, Metallurgical & Material Transactions B, 28, 191–200.
  • 9. Toguri J. M., Santander, N. H., 1969. The Solubility of Copper in Fayalite Slags at 1300oC, Canadian Metallurgical Quarterly, 8(2), 167–174.
  • 10.Chamveha, P., Chaichana, K., Chuachuensuk, A., Authayanun, S., Arpornwichanop, A., 2009. Performance Analysis of a Smelting Reactor for Copper Production Process, Industrial & Engineering Chemistry Research, 48, 1120–1125.
  • 11. Timucin, M., Sevinc, N., Topkaya, Y. A., Eric, H., 1986. Demir-Çelik üretiminde kolemanit kullanımı, Orta Doğu Teknik Üniversitesi, Araştırma Raporu, Ankara.
  • 12. Ozmen, E., Inger, L., 2006. Colemanite in Steel Production, Sohn International Symposium, 299–306, San Diego.
  • 13.Rüşen, A., Geveci, A., Topkaya, Y. A., 2012. Minimization of Copper Losses to Slag in Matte Smelting by Colemanite Addition, Solid State Sciences, 14(11), 1702–1704.
  • 14. Sivrikaya O., Arol, A. I., 2011. Pelletization of Magnetite Ore with Colemanite Added Organic Binders, Powder Technology, 210, 23–28.
  • 15. Kondratiev, A., Jak, E., Hayes, P. C., 2002. Predicting Slag Viscosities in Metallurgical Systems, Journal of Metals, 54(11), 41–45.
  • 16. Seetharaman, S., Sichen, D., Zhang, Y. J., 1999. The Computer-Based Study of Multicomponent Slag Viscosities, Journal of Metals, 51(8), 38–40.
  • 17. Mills, K. C., Chapman, L., Fox, A. B., Sridhar, S., 2001. ‘Round robin’ Project on the Estimation of Slag Viscosities, Scandinavian Journal of Metallurgy, 30, 396–403.
  • 18. Fact-Sage, 2016. www.factsage.com
  • 19. Yazawa A., Koh, J., 1974. Thermodynamic Considerations of Copper Smelting, Canadian Metallurgical Quarterly, 13(3), 443–453.
  • 20. Geveci A., Rosenqvist, T., 1973. Equilibrium Relations between Liquid Copper, Iron-Copper Matte and Iron Silicate Slag at 1250 oC, Transtions of the Institution Mining and Metallurgy C, 82, 193–201.
  • 21. See, J. B., Rankin, W. J., 1983. Effect of Al2O3 and CaO on Solubility of Copper in SilicaUnsaturated Iron Silicate Slags at 1300oC, Transtions of the Institution Mining and Metallurgy C, 92, 9–13.
  • 22.Rao, Y.K., 1985. Stoichometry and Thermodynamics of Metallurgical Processes, 1st edition, Cambridge University Press, Cambribge, UK.
  • 23. Zivkovic, Z., Mitevska, N., Mihajlovic, I., Nikolic, D., 2009. The Influence of the Silicate Slag Composition on Copper Losses During Smelting of the Sulfide Concentrates, Journal of Mining and Metallurgy, 45(1), 23–34.
  • 24.Colf V., Howat, D. D., 1979. Viscosities, Electrical Resistivities, and Liquidus Temperatures of Slags in the System CaOMgO- Al2O3-TiO2-SiO2 under neutral Conditions, Journal South Arfrican Insitute Mining and Metallurgy, 16, 255–264.
  • 25. Aune, R. E., Hayashi, M., Nakajima, K., Seetharaman, S., 2002. Thermophysical Properties of Silicate Slags, Journal of Metals, 54(11), 62–69.
  • 26. Kondratiev, A., Jak, E., 2001. Review of Experimental Data and Modeling of the Viscosities of Fully Liquid Slags in the Al2O3- CaO-‘FeO’-SiO2 System, Metallurgical and Materials Transtions B, 32, 1015–1025.
  • 27. Kondratiev, A., Jak, E., 2005. A QuasiChemical Viscosity Model for Fully Liquid Slags in the Al2O3-CaO-‘FeO’-SiO2 System, Metallurgical and Materials Transtions B, 36, 623–639.
  • 28. Vadasz P., Tomasek, K., 2009. Contribution to the Study of the Structure of the Melts of the System FeO-SiO2-Fe2O3, Journal of Chemical Engineering Data, 54, 327–332.
  • 29. Vidacak, B., Sichen, D., Seetharaman, S., 2001. An Experimental Study of the Viscosities of Al2O3-CaO-‘FeO’Slags, Metallurgical and Materials Transtions B, 32, 679–684.
  • 30. Zhao, B., Jak, E., Hayes, P. C., 2009. High Temperature Viscosity Measurements for Slags at Controlled Oxygen Potential, VIII International Conference on Molten Slags, Fluxes and Salts, 183-194 Santiago.
  • 31. Forsbacka, L., Holappa, L., Iida, T., Kita, Y., Toda, Y., 2003. Experimental Study of Viscosities of Selected Al2O3-CaO-MgO-SiO2 Slags and Application of the Iida Model, Scandinavian Journal of Metallurgy, 32, 273–280.
  • 32. Kowalczyk, J., Mroz, W., Warczok, A., Utigard, T. A., 1995. Viscosity of Copper Slags from Chacocite Concentrate Smelting, Metallurgical and Materials Transtions B, 26, 1217–1223.