Yüksek Fırın Cürufu ve Perlit İkamesinin Çimentolu Macun Dolgunun Mekanik ve Mikroyapı Özelliklerine Etkisi

Son yıllarda Portland çimentosu (PÇ) yerine belirli oranlarda doğal ve yapay puzolanların kullanılması, çimentolu macun dolgunun (CPB) dayanım ve duraylılığının iyileştirilmesi, asit ve sülfat etkisine karşı direncinin arttırılması ve bağlayıcı maliyetlerinin azaltılması için oldukça yaygın hale gelmiştir. Bu çalışmada yüksek fırın cürufu (YFC) ve perlit (P) ikamesinin CPB'nin mekanik ve mikroyapı özelliklerine etkisi araştırılmıştır. PÇ yerine ağırlıkça %20 YFC ve P ikame edilerek hazırlanan 84 adet CPB numunesi 7, 14, 28 ve 56 günlük kür süreleri sonunda tek eksenli basınç dayanımı ve gözeneklilik (porozite) testlerine tabi tutulmuştur. YFC'li numuneler 7-14 günde PÇ numunelerine göre daha düşük dayanım üretirken 28-56 günde bu numunelerin basınç dayanımını geçmiştir. Gözeneklilik sonuçları incelendiğinde, YFC'li numunelerin gözenekliliği kür süresinin artmasıyla daha fazla iyileşme göstermiştir. Perlit katkılı numuneler ise basınç dayanımı ve gözeneklilik gelişimi açısından zayıf kalmıştır. Elde edilen bulgular YFC'nin CPB içerisinde belirli oranlarda kullanımının mekanik ve mikroyapı özellikleri açısından faydalı olduğunu göstermiştir

Effect of the Partial Replacement of Blast Furnace Slag and Perlite on the Mechanical and Microstructural Properties of Cemented Paste Backfill

Recently, the utilization of natural and artificial pozzolans for the partial replacement of Ordinary Portland cement (OPC) has become widespread to be increased the strength and durability, be improved the resistance to acid and sulphate effect and be reduced binder costs of cemented paste backfill (CPB). In this study, the effect of partial replacement of blast furnace slag (BFS) and perlite (P) was investigated on the mechanical and microstructural properties of CPB. A total of 84 CPB samples prepared with the replacement of 20 wt.% of BFS and P were subjected to the uniaxial compressive strength (UCS) and porosity tests at 7, 14, 28 and 56 days of curing periods. The CPB samples with replacement of BFS produced lower UCS than OPC samples at 7-14 days, while, they exceeded the UCS of OPC samples at 28-56 days of curing time. When the porosity results were examined, the porosity of BFS samples demonstrated more improvement with increasing the curing times. CPB samples with replacement of perlite were weak in terms of improvement of UCS and porosity. The findings indicated that the utilization of partial replacement of BFS in CPB is beneficial on the mechanical and microstructural properties of CPB

___

  • 1. Yumlu, M., 2010. Pastefill ‐ Becoming a Feasible and Popular Option for Ensuring Recovery of High Grade Deposits, Cobar Mining Seminar 2010, The Australasian Institute of Mining & Metallurgy, p. 26, New South Wales, Australia.
  • 2. Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., 2012. Tesis Atıklarının Yönetiminde Macun Dolgu Teknolojisi, Madencilik Türkiye, 24, s. 54-59.
  • 3. Yılmaz, T., 2013. Numune Boyutunun Macun Dolgu Dayanımına ve Ultrasonik P- Dalga Hızına Etkisi, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, s. 91, Trabzon.
  • 4. Yılmaz, T., Ercikdi, B., 2016. Predicting the Uniaxial Compressive Strength of Cemented Paste Backfill from Ultrasonic Pulse Velocity Test, Nondestructive Testing and Evaluation, 31,3, p. 247–266.
  • 5. Bulut, Ü., Tanaçan, L., 2009. Perlitin Puzolanik Aktivitesi, İTÜ Dergisi/a Mimarlık, Planlama, Tasarım, 8,1, s. 81-89.
  • 6. Emiroğlu, M., Koçak, Y., Subaşı, S., 2011. Yüksek Fırın Cürufunun Betonun Fiziksel ve Mekanik Özelliklerine Etkisi, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey, p. 113-117.
  • 7. Topçu, İ.B., 2006. Beton. TMMOB İnşaat Mühendisleri Odası Eskişehir Şubesi Yayını, No. 2, Eskişehir.
  • 8. Poon, C.S., Lam, L., Kou, S.C., Lin, Z.S., 1999. A Study on The Hydration Rate of Natural Zeolite Blended Cement Pastes, Cement and Concrete Research, 13,8, p. 427- 432.
  • 9. Cihangir, F., 2016. Yüksek Fırın Cürufu, Üretimi, Özellikleri, Kullanım Alanları ve Sağladığı Avantajlar, International Black Sea Mining & Tunneling Symposium, 2-4 November 2016, Trabzon-Turkey, p. 361-368.
  • 10. Li, C., Sun, H., Li, L., 2010. A Review: The Comparison Between Alkali-Activated Slag (Si+Ca) and Metakaolin (Si+Al) Cements, Cement and Concrete Research, 40,9, p. 1341-1349.
  • 11. Tokyay, M., 2003. Cüruflar ve Cüruflu Çimentolar, Araştırmaların Gözden Geçirilmesi ve Durum Değerlendirmesi Raporu, TÇMB, Ankara, s. 47.
  • 12. Erdem, T.K., Meral, Ç., Tokyay, M., Erdoğan, T.Y., 2007. Use of Perlite as a Pozzolanic Addition in Producing Blended Cements, Cement and Concrete Composites, 29, s.13–21.
  • 13.Çalık, Ü., 2012. Perlitin Puzolanik Katkı Olarak Kireç ile Birlikte Zemin Stabilizasyonunda Kullanımı, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, s.159, Trabzon.
  • 14.Benzaazoua, M., Belem, T., Bussiere, B., 2002. Chemical Factors that Influence the Performance of Mine Sulphidic Paste Backfill, Cement and Concrete Research, 32,7, p.1133-1144.
  • 15. Fall, M., Belem, T., Samb, S., Benzaazoua, M., 2007. Experimental Characterization of The Stress-Strain Behaviour of Cemented Paste Backfill in Compression, Journal of Materials Science, 42, p. 3914-3922.
  • 16. Ouellet, S., Bussiere, B., Aubertin, M., Benzaazoua, M., 2007. Microstructural Evolution of Cemented Paste Backfill: Mercury Intrusion Porosimetry Test Results, Cement and Concrete Research, 37,12, p. 1654-1665.
  • 17. Fall, M., Celestin, J. C., Pokharel, M., Toure, M., 2010. A Contribution to Understanding the Effects of Curing Temperature on the Mechanical Properties of Mine Cemented Tailings Backfill, Engineering Geology, 114, 3-4, p. 397–413.
  • 18. Yu, L. H., Ou, H., Lee, L. L., 2003. Investigation on Pozzolanic Effect of Perlite Powder in Concrete, Cement and Concrete Research, 33, p. 73–76.
  • 19. ASTM C 39, 2012. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, American Society of Testing Material.
  • 20. M. Yumlu., 2001. Backfill Practices at Cayeli Mine. In Proc. of the International Mining Conference, Ankara, Turkey, p. 333–339.
  • 21. ASTM D4404-10, 2010. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry, Annual Book of ASTM Standards, American Society of Testing Material.
  • 22.Cihangir, F., Akyol, Y., 2016. Mechanical, Hydrological and Microstructural Assessment of the Durability of Cemented Paste Backfill Containing Alkali-Activated Slag, International Journal of Mining, Reclamation and Environment, doi.org/10.1080/17480930.2016.1242183.
  • 23. Zheng, J., Zhu, Y., Zhao, Z., 2016. Utilization of Limestone Powder and Water-Reducing Admixture in Cemented Paste Backfill of Coarse Copper Mine Tailings, Construction and Building Materials, 124, p. 31–36.
  • 24.IUPAC, 1972. Manual of Symbols and Terminology. Appendix 2-Part 1: Colloid and Surface Chemistry, Journal of Pure and Applied Chemistry. 31, p. 578–593
  • 25. Demirboğa, R., Türkmen, İ., Karakoç, M. B., 2004. Relationship between Ultrasonic Velocity and Compressive Strength for HighVolume Mineral-Admixtured Concrete, Cement Concrete Res. 34, p. 2329–2336.
  • 26. Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H., Alp, İ., 2009. Utilization of Industrial Waste Products as Pozzolanic Material in Cemented Paste Backfill of High Sulphide Mill Tailings, Journal of Hazardous Materials 168, p. 848–856.
  • 27. Türkmen, İ., Öz, A., Aydın, A. C., 2010. Characteristics of Workability, Strength and Ultrasonic Pulse Velocity of SCC Containing Zeolite and Slag, Scientific Research and Essays, 5,15, p. 2055-2064.
  • 28. Ercikdi, B., Yılmaz, T., Külekçi, K., 2014. Strength and Ultrasonic Properties of Cemented Paste Backfill, Ultrasonics 54,1, p. 1386–1394.
  • 29. Ghirian, A., Fall, M., 2014. Coupled ThermoHydro-Mechanical–Chemical Behaviour of Cemented Paste Backfill in Column Experiments: Part II: Mechanical, Chemical and Microstructural Processes and Characteristics, Engineering Geology, 170, p. 11–23.
  • 30. Fall, M., Benzaazoua, M., Ouellet, S., 2005. Experimental Characterization of the Influence of Tailings Fineness and Density on the Quality of Cemented Paste Backfill, Minerals Engineering. 18,1, p. 41–44.
  • 31. Ercikdi, B., Baki, H., İzki, M., 2013. Effect of Desliming of Sulphide-Rich Mill Tailings on the Long-Term Strength of Cemented Paste Backfill, Journal of Environmental Management, 115, p. 5–13.