Endüstriyel Tesisler için Güneş Duvarı Performansının İncelenmesi

Bu çalışmada, Türkiye'de uygulaması yapılan ilk hava sızdırmalı güneş duvarın saha performansının analizi yapılmıştır. 2012 yılında Çayırova-Kocaeli'nde bir otomotiv tesisinde ısıtma ve havalandırma amaçlı olarak uygulaması yapılan 770 m2'lik güneş duvarının performansı, iki yıllık bir süre zarfında kış dönemlerde üçer aylık periyodlar halinde bina yönetim sistemi vasıtasıyla incelenmiştir. Ayrıca, sistemin teorik analizi, bir güneş duvarı simülasyon yazılımı kullanılarak yapılmış ve elde edilen sonuçlar saha verileri ile karşılaştırılmıştır. Simülasyon sonuçlarına benzer olarak, 2013 yılında 113,037 kWh enerji, 2014 yılındaki 246,924 kWh ısı enerjisi üretmiş ve dönemsel olarak %62 varan bir enerji tasarruf elde edilmiştir

Investigation of Solar Wall Performance for Industrial Facilities

In this study, the performance of field tests of first unglazed transpired solar wall installation in Turkey is analyzed. The performance of the 770 m2 solar wall in an automotive plant in Çayırova - Kocaeli in 2012, has been monitored for winter periods of two years via a building management system. In addition, the theoretical analysis of the system was made by a simulation software for solar wall and the results obtained were compared with the field data. Solar wall delivered 113.037 kWh thermal energy in 2013, 246.924 kWh thermal energy in 2014 and energy savings of up to 62% have been achieved, which are similar to simulated results

___

  • 1. Mauthner, F., Weiss, W., Spörk-Dür, M., 2016. SHC International Energy Agency, Solar Heat Worldwide-Markets and Contribution to the Energy Supply 2014, IEA Solar Heating & Cooling Programme.
  • 2. Balcomb, J. D., 1992, Passive Solar Buildings, MIT Press.
  • 3. Hordeski, M. F., 2002, New Technologies for Energy Efficiency, The Fairmont Press, Marcel Dekker, New York and Basel, ISBN 0-88173- 369-5.
  • 4. Hollick, J.C., 2003. Unglazed Solar Wall Air Heaters, Conserval Engineering Inc., 200 Wildcat Rd. Downsview, Ontario M3J 2N5, Canada,
  • 5. Kutscher, C.F., 1993. An Investigation of Heat Transfer for Air Flow Through Low Porosity Perforated Plates, University of Colorado, Boulder, s.289.
  • 6. Kutscher, C.F., Christensen, C., Barker, G. 1993. Unglazed Transpired Solar Collectors: Heat Loss Theory. ASME Journal of Solar Engineering, Cilt. 115, s. 182–188.
  • 7. Cao, S., Hollands, K.G.T., Brundrett, E., 1993. Heat Exchange effectiveness of unglazed transpired-plate solar collector in 2D flow.In: Proceedings of ISES Solar World Congress 1993, Budapest, Hungary, Vol. 5, pp. 351–366.
  • 8. Pesaran, A.A., Wipke, K., 1994. Use of unglazed transpired solar collectors for desiccant cooling. Solar Energy Journal 52 (5); 419-427.
  • 9. Kutscher, C.F., 1994. Heat Exchanger Effectiveness and Pressure Drop for Airflow Through Perforated Plates, With and Without Cross Wind. ASME Journal of Heat Transfer 116, 391–399.
  • 10. Van Decker, G.W.E., Hollands, K.G.T., Brunger, A.P., 1996. Heat Exchange Effectiveness of Unglazed Transpired-plate Solar Collector in 3D Flow. In: Goietzburger, A., Luther, J. (Eds.), Proceedings of Euro Sun 96, Freiburg, Germany. DGS–Sonnenenergie Verlags GmbH, Munchen, Germany, pp.130–846.
  • 11. Van Decker, G.W.E., Hollands, K.G.T., 1999. An Empirical Heat Transfer Equation for the Transpired Solar Collectors, Including no-wind Conditions. In: Proceedings of the ISES 99 Solar World Congress, Australia.
  • 12. Van Decker, G.W.E., Hollands, K.G.T., Brunger, A.P., 2001. Heat Exchange Relations for Unglazed Transpired Solar Collectors With Circular Holes on a Square or Triangular Pitch. Solar Energy 71 (1), 33–45.
  • 13.Campbell-Howe, R., 1996. Thermal Simulation and Economic Assessment of Unglazed Transpired Collestor Systems, The 1996 American Solar Energy Society Annual Conference, Asheville, North Carolina, April 13-18.
  • 14. Dymond, C., Kutscher, C., 1997. Development of a Flow Distribution and Design Model for Transpired Solar Collectors. Solar Energy, 60 (5); 291-300.
  • 15. Dymond, C., Kutscher, C.F., 1997. Development of a Flow Distribution and Design Model for Transpired Solar Collectors. Solar Energy, 60(5):291–300.
  • 16.Christensen, C., 1998. Transpired Collectors (Solar Preheaters for Outdoor Ventilation Air), In: Program FEM.
  • 17. Arulanandam, S.J., Hollands, K.G.T., Brundrett, E., 1999. A CFD Heat Transfer Analysis of the Transpired Solar Collector under No-wind Conditions. Solar Energy 67 (1–3), 93–100.
  • 18. Gunnewiek, L.H, Brundrett, E., Hollands, KGT., 1996. Flow Distribution in Unglazed Transpired Plate Solar Air Heaters of Large Area. Solar Energy, 58; 227-37.
  • 19. Gunnewiek, L.H., Hollands, K.G.T., Brundrett, E., 2002. Effect of Wind on Flow Distribution in Unglazed Transpired-plate Collectors. Solar Energy, Cilt:72, s.317-25.
  • 20. Maurer, C.C., 2004. Field Study and Modeling of an Unglazed Transpired Solar Collector System, Yüksek Lisans Tezi, Mechanical and Aerospace Engineering, North Carolina State University.
  • 21. Gawlik, K., Christensen, C., Kutscher, C., 2005. A Numerical and Experimental Investigation of Low-conductivity Unglazed, Transpired Solar Air Heaters. Journal of Solar Energy Engineering, Transactions of the ASME.; Cilt. 127: s.153-5.
  • 22. Naveed, A.T., Kang, E.C., Lee, E.J., 2006. Effect of Unglazed Transpired Collector on the Performance of a Polycrystalline Silicon Photovoltaic Module, Journal of Solar Energy Engineering, 128, pp. 349–353.
  • 23. Guan, W., Wang, Z.H., 2006. Numerical Simulation Study on Transpired Solar Air Collector, Renewable Energy Resources and Greener Future, ICEBO2006, Shenzhen, China.
  • 24. Frank, E., Budig, C., Vajen, K., 2006. Experimental and Theoretical Investigation of Unglazed Transpired Air Collectors in a Multicomponent Solar Thermal System, Proc. Eurosun 2006, Glasgow (UK), 27.-29.6.06.
  • 25. Augustus Leon, M., Kumar, S., 2007. Mathematical Modeling and Thermal Performance Analysis of Unglazed Transpired Solar Collectors, Solar Energy, 81, 62-75.
  • 26. Augustus Leon, M., Kumar, S., 2007. Mathematical Modeling and Thermal Performance Analysis of Unglazed Transpired Solar Collectors. Augustus. Solar Energy (0038-092X)1/1/. Cilt. 81, Iss.1; s.62-75.
  • 27. Lixin, G., Hua., B., 2009. Study on the Application Potential of Solar wall System in Northern China. Power and Energy Engineering Conference, APPEEC 2009. AsiaPacific (978-1-4244-2486-3), s.4-4.
  • 28. Motahar, S., Alemrajabi, A.A., 2010. An Analysis of Unglazed Transpired Solar Collectors Based on Exergetic Performance Criteria, International Journal of Thermodynamics. Cilt: 13, s. 153-60.
  • 29. Li, S., Karava, P., 2014. Energy Modeling of Photovoltaic Thermal Systems With Corrugated Unglazed Transpired Solar Collectors–Part 2: Performance Analysis, Solar Energy, Cilt. 102, s. 297–307.
  • 30. Li, S., Karava , P., Currie, S., Lin , W. E., Savory, E., 2014. Energy Modeling of Photovoltaic Thermal Systems With Corrugated Unglazed Transpired Solar Collectors–Part 1: Model development and validation, Solar Energy, Cilt. 102, s. 282–296.
  • 31. Vasan, N., Stathopoulos, T., 2014, Experimentalstudy of Wind Effects on Unglazed Transpired Collectors, Solar Energy, Cilt. 101, s. 138–149.
  • 32.Chan, H.Y., Zhu, J., Riffat, S., 2013. Heat Transfer Analysis of the Transpired Solar Facade, Energy Procedia, Cilt 42, s. 123–132.
  • 33.Browna, C., Perisogloua, E., Halla, R., Stevenson, V., 2014. Transpired Solar Collector Installations in Wales and England, Energy Procedia, Cilt. 48, s.18–27.
  • 34. Zheng, W., Li, B., Zhang, H., You, S., Li, Y., Ye, T., 2016. Thermal Characteristics of a Glazed Transpired Solar Collector With Perforating Corrugated Plate in Cold Regions, Energy, Cilt. 109, s. 781-790.
  • 35. Gao, L., Bai, H., Mao, S., 2014. Potential Application of Glazed Transpired Collectors to Space Heating in Cold Climates. Energy Conservation and Management, Cilt. 77, s. 690-699.
  • 36. Augustus Leon, M., Kumar, S., 2007. Mathematical Modelling and Thermal Performance Analysis of Unglazed Transpired Solar Collectors. Solar Energy, Cilt:81, s.62-75.
  • 37. Kozubal, E., Deru, M., Slayzak, S., Norton, P., Barker, G., McClendon, J., 2008. Evaluating the Performance and Economics of Transpired Solar Collectors for Commercial Applications. Proceedings of 2008ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Groove, CA, USA.
  • 38. Hall, R., Blower, J., 2016. Low-emissivity Transpired Solar Collectors, Energy Procedia, Cilt. 91, s. 56–63.
  • 39. Eryener, D., 2009. Metal Cladding System with a Heat Exchanger System, Turkish Patent Institute.
  • 40. www.solarwall.com
  • 41. Kramer, K.S., 2013. IEA-SHC TASK 43: Solar Rating and Certification Procedures, Solar Heating & Cooling Programme International Energy Agency.
  • 42. Summers David, N., 1996. Thermal Simulation and Economic Assessment of Unglazed Transpired Collector System. Wisconsin Energy Bureau, University of Wisconsin, USA,
  • 43.Cengel, Y.A., Turner, R.H., 2001, Fundamentals of thermal-fluid sciences, McGraw-Hill, Boston, 609.
  • 44. Martin, M., Berdahl, P., 1984. Characteristics of infrared sky radiation in the United States, Solar Energy 33 (3–4), 321–336.
  • 45. http://www.retscreen.net