Wind Speed Forecasting using Time Series Analysis Methods

Doğal, tükenmeyen, temiz ve sürdürülebilir bir enerji kaynağı olduğundan rüzgâr enerjisi dünyada önem kazanmaktadır. Rüzgâr enerjisi istasyonlarının tasarlanması ve kurulması için rüzgâr hızı tahmini önemlidir. Bu çalışmada, Türkiye'deki beş farklı coğrafi bölge ve dokuz meteorolojik istasyondan 1960 ve 2014 yılları arasındaki uzun dönemli aylık ortalama rüzgâr hızı verileri dikkate alınarak rüzgâr enerjisi için farklı zaman serisi analizi metotları karşılaştırılmıştır. Çalışmanın sonucunda elde edilen düşük performans ölçüm değerleri, rüzgâr hızı tahminleri için bu çalışmada ele alınan metotların kullanılabileceğini göstermektedir

Zaman Serisi Analiz Metotları Kullanılarak Rüzgâr Hızının Tahmin Edilmesi

As a natural, non-consumable, clean and sustainable energy resource, wind energy is becoming crucial throughout the world. Forecasting wind speed is noteworthy to design and install wind power stations. In this study, several time series analysis methods for wind energy were compared considering long-termmonthly-average wind speed data between the years of 1960 and 2014 at nine meteorological stations throughout five geographical areas in Turkey. The low performance measure values seen in results indicate that the methods used in this study can be forecast for wind speed

Kaynakça

1. Wagner, H.J., Mathur, J., 2012. Introduction to Wind Energy Systems: Basics, Technology and Operation. Springer Science & Business Media.

2. Lun, I.Y., Lam, J.C., 2000. A Study of Weilbull Parameters using Long-term Wind Observations. Renewable Energy 20(2), 154- 153.

3. Ewing, B.T., Kruse, J.B., Schroeder, J.L., Smith, D.A., 2007. Time Series Analysis of Wind Speed using VAR and the Generalized Impulse Response Technique. Journal of Wind Engineering and Industrial Aerodynamics 95, 209- 219.

4. Togrul, I.T., Ertekin, C., 2011. A Statistical Investigation on the Wind Energy Potential of Turkey’s Geographical Regions. Energy Sources 33, 1399-1421.

5. Su, C., Quan, J., Fu, Y., 2012. Correlation Analysis for Wind Speed and Failure Rate of Wind Turbines using Time Series Approach. Journal of Renewable and Sustainable Energy 4, 032301.

6. Assareh, E., Behrang, M.A., Ghalambaz, M., Noghrehabadi, A.R., Ghanbarzadeh, A., 2012. An Analysis of Wind Speed Prediction using Artificial Neural Networks: A Case Study in Manjil Iran. Energy Sources 34, 636- 644.

7. Shu, Z.R., Li, Q.S., Chan, P.W., 2015. Statistical Analysis of Wind Characteristics and Wind Energy Potential in Hong Kong. Energy Conversion and Management 101, 644- 657.

8. Zhang, Z., Zhang, R., Fang, D., Wang, J., 2015. Prediction Study and Application of Wind Power Development Based on Filtering Error Threshold. Environmental Progress and Sustainable Energy 34 (5), 1536- 1546.

9. Saberivahidaval, M., Hajjam, S., 2015. Comparison Between Performances of Different Neural Networks for Wind Speed Forecasting in Payam Airport, Iran. Environmental Progress and Sustainable Energy 34 (4), 1191- 1196.

10. Zuluaga, C.D., Alvarez, M.A., Giraldo, E., 2015. Short-term Wind Speed Prediction Based on Robust Kalman Filtering: an Experimental Comparison. Applied Energy 156, 321-330.

11. Santamaria-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C., 2016. Wind Speed Forecasting for Wind Farms: A Method Based on Support Vector Regression. Renewable Energy 85, 790- 809.

12. Mohandes, M., Rehman, S., Abido, M., Badran, S., 2016. Convertible Wind Energy Based on Predicted Wind Speed at Hub-height, Energy Sources 38(1), 140-148.

13. Ambach, D., Croonenbroeck, C., 2016. Space Time Short to Medium Term Wind Speed Forecasting. Statistical Methods and Applications 25(1), 5- 20.

14. Doucoure, B., Agbossou, K., Cardenas, A., 2016. Time Series Prediction using Artificial Wavelet Neural Network and Multi-resolution Analysis: Application to Wind Speed Data. Renewable Energy 92, 202- 211.

15. Liu, Y., Wang, Y., Li, L., Han, S., Infield, D., 2016. Numerical Weather Prediction Wind Correction Methods and its Impact on Computational Fluid Dynamics Based Wind Power Forecasting. Journal of Renewable and Sustainable Energy 8, 033302.

16.Jiang, P., Ge, Y., Wang, C., 2016. Research and Application of a Hybrid Forecasting Model Based on Simulation Annealing Algorithm: A Case Study of Wind Speed Forecasting. Journal of Renewable and Sustainable Energy 8, 015501.

17.Cadenas, E., Rivera, W., Campos-Amezcua, R., Heard, C., 2016. Wind Speed Prediction using a Univariate ARIMA Model and a Multivariate NARX Model. Energies, 9,109; doi: 10.3390.

18. Huang, N., Yuan, C., Cai, G., Xing, E., 2016. Hybrid Short Term Wind Speed Forecasting using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine. Energies, 9,989; doi: 10.3390.

19. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J., 2012. Current Methods and Advances in Forecasting of Wind Power Generation. Renewable Energy 37(1), 1- 8.

20. Lahmiri, S., 2012. A Variational Mode Decompoisition Approach for Analysis and Forecasting of Economic and Financial Time Series. Expert Systems with Applications 55, 268- 273.

21. See www.mgm.gov.tr

22. Krajewski, L.J., Ritzman, L.P., Malhotra, M.K., 2010. Operations Managements Process and Supply Chains. Pearson Education Inc., 9th edition.

23. Olaofe, Z.O., 2014. A Five-day Wind Speed & Power Forecasts using a Layer Recurrent Neural Network. Sustainable Energy Technologies and Assessments 6: 1-24.

Kaynak Göster