Yumuşak Çeliğin Korozyon Davranışı

Bu çalışmada yumuşak çeliğin (YÇ) asidik ortamındaki korozyon davranışına 3-Amino metil piridin'in (3AMP) inhibitör etkisi araştırılmıştır. Elektrokimyasal teknikler (elektrokimyasal impedans spektroskopisi ve polarizasyon ölçümleri) ve kuantum kimyasal hesaplamalar uygulanmıştır. Elde edilen sonuçlara göre; 3AMP'nin inhibisyon etkinliği artan 3AMP derişimi ile artış göstermiştir. 50 mM 3AMP içeren 0,5 M HCl çözeltisinde inhibisyon etkinliği %97 olarak tespit edilmiştir. Polarizasyon ölçümleri 3AMP'nin hem katodik hem de anodik reaksiyonların hızını azalttığını göstermektedir. Yüksek inhibisyon etkinliği, teorik olarak belirlenen yüksek HOMO enerjisi (-6,937 eV), dipol momenti (2,473 D) ve düşük LUMO enerjisi (-1,05 eV) ile ilişkilendirilmiştir. Belirlenen Mulliken yüklere göre; N atomları üzerindeki negatif yük sebebiyle 3AMP'nin yumuşak çelik yüzeyine adsorpsiyonunun amin ve/veya N ucundan gerçekleşebileceği düşünülmektedir

The Corrosion Behavior of Mild Steel

In this study, the inhibition effect of 3-aminomethyl pyridine (3AMP) on mild steel corrosion behavior in acidic medium is investigated. The electrochemical techniques (electrochemical impedance spectroscopy and polarization measurements) and quantum chemical calculations were obtained. The results showed that; inhibition efficiencies increase with increasing concentration of 3AMP. The inhibition efficiency is 97% in 50 mM 3AMP containing 0.5 M HCl solution. It is found that 3AMP retards both anodic and cathodic reactions according to polarization measurements. The high inhibition efficiency of 3AMP is attributed to the high value of EHOMO (-6.937 eV), dipole moment μ (2.473 D) and low value of ELUMO (-1.049 eV). According to calculated Mulliken charges; the adsorption of 3AMP may be occurred on amine and/N terminal of molecule

___

  • 1. Ji, Y., Xu B., Gong, W., Zhang, Z., Jin, X., Ning W., Meng Y., Yang W., Chen Y., 2016. Journal of the Taiwan Institute of Chemical Engineers: Corrosion Inhibition of a New Schiff Base Derivative With Two Pyridine Rings on Q235 Mild Steel in 1.0 M HCl, 66, p. 301–312.
  • 2. Ansari, K., Quraishi, M.A., Singh, A., 2015. Measurement: Pyridine Derivatives As Corrosion Inhibitors for N80 Steel in 15% HCl: Electrochemical, Surface and Quantum Chemical Studies, 76, p. 136–147.
  • 3. Singh, P., Quraishia, M.A., Gupta, S.I., Dandi, A., 2016. Journal of Taibah University for Science: Investigation of The Corrosion Inhibition Effect of 3-Methyl-6-Oxo-4- (Thiophen-2-Yl)-4,5,6,7-Tetrahydro-2HPyrazolo[3,4-B]Pyridine-5-Carbonitrile (TPP) On Mild Steel in Hydrochloric Acid, 10, p. 139–147.
  • 4. Kosari, A., Moayed, M.H., Davoodi, A., Parvizi, R., Momeni, M, Eshghi, H, Moradi, H., 2014. Corrosion Science: Electrochemical and Quantum Chemical Assessment of Two Organic Compounds From Pyridine Derivatives as Corrosion İnhibitors For Mild Steel in HCl Solution Under Stagnant Condition And Hydrodynamic Flow. 78, p. 138-150.
  • 5. Ansari, K., Quraishi, M.A., Singh, A., 2015. Journal of Industrial and Engineering Chemistry: Corrosion Inhibition of Mild Steel in Hydrochloric Acid By Some Pyridine Derivatives: An Experimental And Quantum Chemical Study, 25, p. 89–98.
  • 6. Tebbji, K., Ouddac, H., Hammouti, B., Benkaddour M., Kodadi M., Ramdani A., 2005. Colloids and Surfaces A: Inhibition Effect of Two Organic Compounds Pyridine– Pyrazole Type In Acidic Corrosion of Steel, 259, p. 143–149.
  • 7. Mourya, P., Sing, P., Rastog, R., Singh, M., 2016. Applied Surface Science: Inhibition of Mild Steel Corrosion By 1,4,6-Trimethyl-2- Oxo-1,2-Dihydropyridine-3-Carbonitrile And Synergistic Effect of Halide Ion in 0.5 M H2SO4, 380, p. 141–150.
  • 8. Bouklah, M., Attayibat, A., Hammouti, B., Ramdani, A., Radi S., Benkaddour M., 2005. Applied Surface Science: Pyridine–Pyrazole Compound as Inhibitor for Steel in 1 M HCl, 240, p. 341–348.
  • 9. Bockris, J.O., Reddy, A.K.N., Gamboa A.M., 2000. Modern electrochemistry Fundamentals of electrodics. 2nd ed., New York, USA.
  • 10. Scendo, M., Trela, J., 2013. Journal of Electrochemical Science: Adenine as an Effective Corrosion Inhibitor for Stainless Steel in Chloride Solution, p. 9201–9221.
  • 11. Deng, S., Li, X., Xie, X., 2014. Corrosion Science: Hydroxymethyl Urea And 1,3-Bis (Hydroxymethyl) Urea as Corrosion Inhibitors for Steel in HCl Solution, 80 p. 276–289.
  • 12. Khamis, A., Saleh, M.M., Awad, M.I., ElAnadouti, B.E., 2013. Corrosion Science Enhancing The Inhibition Action of Cationic Surfactant with Sodium Halides For Mild Steel in 0.5 M H2SO4, 74, p. 83–91.
  • 13. Li, X., Deng, S., Fu, H., Xie, X., 2014. Corrosion Science Synergistic Inhibition Effects of Bamboo Leaf Extract/Major Components and Iodide Ion on The Corrosion of Steel in H3PO4 solution, 78, p. 29–42.
  • 14. Yadav, M., Sinha, R.R, Kumar, S., Bahadur, I., Ebenso E.E., 2015. Journal of Molecular Liquids: Synthesis And Application of New Acetohydrazide Derivatives as a Corrosion Inhibition of Mild Steel in Acidic Medium: Insight From Electrochemical And Theoretical Studies, 208, p. 322–332.
  • 15. Zhanga, D., Tanga, Y., Qia, S., Donga, D., Cang, H., Lu, G., 2016. Corrosion Science: The Inhibition Performance of Long-Chain AlkylSubstituted Benzimidazole Derivatives For Corrosion of Mild Steel in HCl, 102, p. 517-522.
  • 16. Yüce, A., Telli, E., Doğru Mert, B., Kardaş, G., Yazıcı, B., 2016. Journal of Molecular Liquids: Experimental and Quantum Chemical Studies on Corrosion Inhibition Effect of 5,5 Diphenyl 2-Thiohydantoin on Mild Steel in HCl Solution, 218, p. 384-392.