Bir Kesikli Sistemde Posidonia oceanica (L.) Deniz Çayırları Kullanılarak Hg2+’nin Sulu Çözeltiden Biyosorpsiyonu: Denge ve Kinetik Modelleme

Bu çalışmada, bir Akdeniz lignoselülozik biyokütlesi olan ham deniz çayırı Posidonia oceanica lifleri kullanılaraksulu çözeltiden Hg2+ uzaklaştırılması için kesikli sistem çalışmaları yapıldı. 25°C'de bir seri deneysel çalışma ilebiyosorpsiyon üzerine pH ve temas süresi etkisi araştırıldı. Hg2+nın uzaklaştırılmasının ilk aşamada (40 dk) çokhızlı olduğu ve optimum biyosorpsiyon kapasitesinin çözeltinin pH’sı 6 iken gerçekleştiği görüldü. Biyosorbanınfonksiyonel gruplarını ve yüzey özelliklerini karakterize etmek için Fourier Dönüşümlü Kızılötesi ve EnerjiDağılımı Spektroskopi teknikleri ile Taramalı Elektron Mikroskobu kullanıldı. Denge verileri Langmuir veFreundlich modelleri tarafından tanımlandı. Yalancı ikinci dereceden kinetik modelin tüm veriler için uygunolduğu bulundu. Ayrıca bu çalışma; Hg2+nın Posidonia oceanica üzerine biyosorpsiyonun, deniz ekosistemindekiciva (II) aktarımını anlamada önemli olduğunu gösterdi.

Biosorption of Hg2+ From Aqueous Solutions by Posidonia oceanica (L.) Seagrass in a Batch System: Equilibrium and Kinetic Modeling

In this study, batch experiments were carried out for the removal of Hg2+ from aqueous solution while raw seagrass Posidonia oceanica fibers, a Mediterranean marine lignocellulosic biomass, was used a biosorbent. Solution pH and contact time were investigated on biosorption in a series of batch experimental studies at 25 ºC. It was found that the removal of Hg2+ was very fast, during the first (40 minutes) and optimal biosorption capacity was at pH 6 of the solution. Fourier transformer infrared and Scanning Electron Microscopy with Energy Dispersive Spectroscopy techniques were used to characterize the functional groups and surface properties of biosorbent. The equilibrium data were described by Langmuir and Freundlich models. It was found that the pseudo-second-order kinetic model was suitable for all the data. Also this study shows that biosorption of Hg2+ on Posidonia oceanica is significance for understanding mercury (II) transference in the marine ecosystem.

___

  • [1] Rae I.B., Gibb S.W., Lu S. 2009. Biosorption of Hg from aqueous solutions by crab carapace. Journal of Hazardous Materials, 164 (2-3): 1601-1604.
  • [2] Khoramzadeh E., Nasernejad B., Halladj R. 2013. Mercury biosorption from aqueous solutions by Sugarcane Bagasse. Journal of the Taiwan Institute of Chemical Engineers, 44: 266-269.
  • [3] Esmaeili A., Saremnia B., Kalantari M. 2015. Removal of mercury(II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arabian Journal of Chemistry, 8 (4): 506–511.
  • [4] Devani M.A., Munshi B., Oubagaranadin J.U.K. 2015. Characterization and use of chemically activated Butea monosperma leaf dust for mercury(II) removal from solutions. Journal of Environmental Chemical Engineering, 3 (3): 2212-2218.
  • [5] Al Rmalli S. W., Dahmani A. A., Abuein M.M., Gleza A.A. 2008. Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). Journal of Hazardous Materials, 152 (3): 955-959.
  • [6] Jafari S.A., Cheraghi S. 2014. Mercury removal from aqueous solution by dried biomass of indigenous Vibrio parahaemolyticus PG02: Kinetic, equilibrium, and thermodynamic studies. International Biodeterioration & Biodegradation,, 92: 12-19.
  • [7] Su Kirliliği Kontrolü Yönetmeliği, 31.12.2004 Sayılı Resmi gazete.
  • [8] Babel S., Kurniawan T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97 (1–3): 219-243.
  • [9] Ahluwalia S.S., Goyal D. 2007. Microbial and plant derived biomass for the removal of heavy metals from wastewater. Bioresource Technology, 98 (12): 2243–2257.
  • [10] Khairi N.A.S., Yusof N.A., Abdullah A.H. Mohammad F. 2015. Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer. International Journal of Molecular Sciences, 16 (5): 10562-10577.
  • [11] Wang X.S., Li F., He Y.W., Miao H.H. 2010. Hg(II) removal from aqueous solutions by Bacillus subtilis biomass. Clean Soil Air Water, 38 (1): 44-48.
  • [12] Eom Y., Won J.H., Ryu J.Y., Lee T.G. 2011. Biosorption of mercury (II) ions from aqueous solution by garlic (Allium sativum L.) powder. Korean Journal of Chemical Engineering, 28 (6): 1439-1443.
  • [13] Zeroual Y., Moutaouakkil A., Dzairi F.Z., Talbi M., Chung P.U., Lee K., Blaghen M. 2003. Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresource Technology, 90 (3): 349–351.
  • [14] Basci N., Kocadagistan E., Kocadagistan B. 2004. Biosorption of copper (II) from aqueous solutions by wheat Shell. Desalination, 164 (2): 135-140.
  • [15] Herrero R., Lodeiro P., Rey-Castro C., Vilarino T., Sastre de Vicente M.E. 2005. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Resource, 39 (14): 3199–3210.
  • [16] Al Rmalli S.W., Harrington C.F., Ayub M., Haris P.I. 2005. A biomaterial based approach for arsenic removal from water. Journal of Environmental Monitoring, 7: 279-282.
  • [17] Rezaee A., Ramavandi B., Ganati F., Ansari M., Solimanian A. 2006. Biosorption of mercury by biomass of filamentous algae Spirogyra species. Journal of Biological Sciences, 6 (4): 695- 700.
  • [18] Mo B.B., Lian B. 2011. Hg(II) adsorption by Bacillus mucilaginosus: mechanism and equilibrium parameters. World Journal of Microbiology and Biotechnology, 27 (5): 1063-1070.
  • [19] Pergent G., Pergent-Martini C. 1999. Mercury levels and fluxes in Posidonia oceanica meadows. Environmental Pollution, 106: 33-37.
  • [20] Demirak A., Dalman Ö., Tilkan E., Yıldız D., Yavuz E., Gökçe C. 2011. Biosorption of 2,4 dichlorophenol (2,4 DCP) onto Posidonia oceanica (L.) seagrass in a batchsystem: Equilibrium and kinetic modeling. Microchemical Journal, 99: 97-102.
  • [21] Lafabrie C., Pergent G., Pergent-Martini C., Capiomont A. 2007. Posidonia oceanica: A tracer of past mercury contamination. Environmental Pollution, 148 (2): 688-692.
  • [22] Lafabrie C., Pergent G., Pergent-Martini C. 2009. Utilization of the seagrass Posidonia oceanica to evaluate the spatial dispersion of metal contamination. Science of The Total Environment, 407 (7): 2440-2446.
  • [23] Ferrat L., Gnassia-Barelli M., Pergent-Martinia C., Romeo M. 2003. Mercury and non-protein thiol compounds in the seagrass Posidonia oceanica. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 134 (1): 147-155.
  • [24] Pretsch E., Buhlmann P., Badertscher M. 2009. Structure Determination of Organic Compounds. Springer-Verlag Berlin Heidelberg, 433s.
  • [25] Rubino F.M. 2015. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms. Toxics, 3 (1): 20-62.
  • [26] Dujardin M.C., Caze C., Vroman I. 2000. Ion-exchange resins bearing thiol groups to remove mercury. Part 1: synthesis and use of polymers prepared from thioester supported resin. Reactive and Functional Polymers, 43 (1-2): 123–132.
  • [27] Zhang C., Sui J., Li J., Tang Y., Cai W. 2012. Efficient removal of heavy metal ions by thiol functionalized superparamagnetic carbon nanotubes. Chemical Engineering Journal, 210: 45-52.
  • [28] Pillay K., Cukrowska E.M., Coville N.J. 2013. Improved uptake of mercury by Sulphur containing carbon nanotubes. Microchemical Journal; 108: 124-130.
  • [29] Chen Z., Deng H., Chen Y., Yang Y. Xu H. 2014. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method. Journal of Environmental Health Science & Engineering, 12: 1-10.
  • [30] Sinha A., Khare S.K. 2012. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation, 23 (1): 25-34
  • [31] Li H., Lin Y., Guan W., Chang J., Xu L., Guo J., Wei G. 2010. Biosorption of Zn (II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. Journal of Hazardous Materials, 179 (1-3), 151-159.
  • [32] Zhang F.S., Nriagu J.O., Itoh H. 2005. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39 (2-3): 389-395.
  • [33] Green-Ruiz C. 2006. Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresource Technology, 97 (15): 1907-1911.