Investigation of Thermodynamic Properties of Ni30Ti50Cu20 Shape Memory Alloy

Şekil hatırlamalı NiTiCu alaşımı ark-ergitme yöntemi ile üretildi ve faz dönüşüm sıcaklıkları, bazı termodinamik parametreleri ile mikroyapısal özellikleri araştırıldı. 10°C/dak. ısıtma-soğutma hızı ile alınan DSC sonuçlarına göre; austenite başlangıç sıcaklığı (As) 23.5 oC, austenite bitiş sıcaklığı (Af) 50.6 oC, martensit başlangıç sıcaklığı (Ms) 26.7 oC ve (Mf) -0.10 oC olarak bulundu. Farklı ısıtma hızlarında alınan DSC ölçümlerine göre ise alaşımın martensit fazdan austenite faza geçerken dönüşüm sıcaklıkları (As ve Af) değişirken, austenite fazdan martensit faza geçerken dönüşüm sıcaklıklarının (Ms ve Mf) değişmediği görülmüştür. Kissinger metodu ile bulunan aktivasyon enerjisi Ea=63.208 kJ/mol olarak bulunmuştur. Gibbs serbest enerjisi ısıtma-soğutma hızlarıyla küçük değişimler göstermiştir. DSC eğrilerinden tek-adımlı B2 ↔B19 faz geçişi görülmüş ve bu fazların kristal yapıları XRD analizi ile belirlenmiştir. Bununla birlikte Ti2(Ni, Cu) çökeltilerinin yanı sıra NiTi alaşımının interfazlarında çözünen Cu elementlerinin TiNi0,8Cu0,2 formundaki matrislerine rastlanmıştır. SEM-EDX sonuçları ile alaşımdaki Ti2(Ni, Cu) çökeltilerinin atomik yüzdeleri belirlenmiştir. Alaşımın mikrosertliği 219 HV olarak bulunmuştur. Bu değer, artan Cu miktarının geleneksel ikili NiTi alaşımlarını daha yumuşak material haline getirdiğini göstermiştir.

Investigation of Thermodynamic Properties of Ni30Ti20Cu20 Shape Memory Alloy

Phase transformation temperatures, certain thermodynamic parameters and microstructural features of Ni30Ti50Cu20 shape memory alloy produced by arc-melting process were examined. Owing to DSC results obtained at 10°C/min heating-cooling rate, it was determined that austenite start (As) temperature is 23.5 oC, austenite finish (Af) temperature is 50.6 oC, martensite start (Ms) temperature is 26.7 oC and martensite finish (Mf) temperature is -0.10 oC. It was observed that according to DSC measurements obtained at different heating rate, while transformation temperature of the alloy from martensite phase to austenite phase (As and Af) varied, from austenite phase to martensite phase (Ms and Mf) did not. Thermal activation energy of the alloy measured by Kissinger method was found as Ea=63.208 kJ/mol. Moreover, Gibbs free energy was observed to display slight increases with the heating-cooling rates. Also, from the results of DSC curves, it was seen that at one-step B2 ↔B19 occurred and crystalline structures of these phases were determined at room temperature with the help of XRD analysis. Besides, precipitations of Ti2(Ni, Cu) as well as matrices in the form of TiNi0,8Cu0,2 of element Cu dissolved in interphases of NiTi were encountered. With the results of SEM-EDX, atomic percentage of precipitations (at.%) of Ti2(Ni, Cu) formed in the alloy were determined. The microhardness value of the alloy was measured as 219 HV. It was concluded that this value makes increased Cu amount to be softer metal than traditional binary NiTi alloys. 

___

  • Refereans1 Lin K.N., Wu S.K., and Tsai C.L., 2008. The Effect of Thermal Cycling on B2→B19→B19' Transformations of Ti50Ni40Cu10 Shape Memory Alloy by Dynamic Mechanical Analyzer, Materials Transactions, 49(12): 2776-2780.
  • Referans2 Gil F.J., Solano E., Pena J., Engel E., Mendoza A., Planell J.A., 2004. Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys, Journal of Materials Science: Materials in Medicine, 15(11):1181-1185.
  • Referans3 Fan G., Zhou Y., Otsuka K., Ren X., Nakamura K., Ohba T., Suziki T. Yoshida I., Yin F., 2006. Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50−xCux shape memory alloys. Acta Materialia, 54(19): 5221-5229.
  • Referans4 Ohba T., Taniwaki T., Myamoto H., Otsuka K., Kato K., 2006. In situ observations of martensitic transformations in Ti50Ni34Cu16 alloy by synchrotron radiation. Materials Science and Engineering: A, 438-440: 480-484.
  • Referans5 Morakabati M., Aboutalebi M., Kheirandish S.H., Karimi Taheri A., Abbasi S.M., 2011. Hot tensile properties and microstructural evolution of as cast NiTi and NiTiCu shape memory alloys. Materials & Design, 32(1): 406-413.
  • Referans6 Tang W., Sandström R., Wei Z.G., Miyazaki S., 2000. Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys. Metallurgical and Materials Transactions A, 31(10): 2423-2430.
  • Referans7 Lee J.-h., Nam T-h., Ahn H-j., Kim Y-w., 2006. Shape memory characteristics and superelasticity of Ti–45Ni–5Cu alloy ribbons. Materials Science and Engineering: A, 438-440: 691-694.
  • Referans8 Nam T.H., Saburi T., Shimizu K., 1990. Cu-Content Dependence of Shape Memory Characteristics in Ti–Ni–Cu Alloys. Materials Transactions, JIM, 31(11): 959-967.
  • Referans9 Nam T.H., Noh J.P., Hur S.G., Kim J.S., Kang S.B., 2002. Phase Transformation Behavior and Shape Memory Characteristics of Ti-Ni-Cu-Mo Alloys, Materials transactions, 43(5): 802-808.
  • Referans10 Morakabati M., Kheirandish S.H., Aboutalebi M., Karimi Taheri A., Abbasi S.M., 2010. The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys, Journal of Alloys and Compounds, 499(1): 57-62.
  • Referans11 Colombo S., Cannizo C., Gariboldi F., Airoldi G., 2006. Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy, Journal of Alloys and Compounds, 422(1-2): 313-320.
  • Referans12 Otsuka K., and Ren X., 1999. Recent developments in the research of shape memory alloys. Intermetallics, 7(5): 511-528.
  • Referans13 Fabregat-Sanjuan, A., Ferrando F., and De la Flor S., 2015. Influence of Heat Treatment on Internal Friction Spectrum in NiTiCu Shape Memory Alloy. Materials Today: Proceedings, 2: S755-S758.
  • Referans14 Goryczka T., and Humbeeck J., 2006. Characterization of a NiTiCu shape memory alloy produced by powder technology, Vol. 17.
  • Referans15 Zengin R., Ozgen S., and Ceylan M., 2004. Oxidation behaviour and kinetic properties of shape memory CuAlxNi4 (x=13.0 and 13.5) alloys, Vol. 414. 79-84.
  • Referans16 Yildiz K., Balci E., and Akpinar S., 2017. Quenching media effects on martensitic transformation, thermodynamic and structural properties of Cu–Al–Fe–Ti high-temperature shape memory alloy. Journal of Thermal Analysis and Calorimetry, 129(2): 937-945.
  • Referans17 Ramaiah K.V., Saikrishna C.N., Gouthama, Bhaumik S.K., 2014. Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability, Materials & Design (1980-2015), 56: 78-83.
  • Referans18 Kök M., Yakinci Z.D., Aydoğdu A., Aydoğdu Y., 2014. Thermal and magnetic properties of Ni51Mn28.5Ga19.5B magnetic-shape-memory alloy, Journal of Thermal Analysis and Calorimetry, 115(1): 555-559.
  • Referans19 Dagdelen F., and Ercan E., 2014. The surface oxidation behavior of Ni–45.16%Ti shape memory alloys at different temperatures, Journal of Thermal Analysis and Calorimetry, Vol. 115 (1): 561-565.
  • Referans20 Acar E., 2016. The determination of the phase transformations and activation energies in NiTi smart alloys. Gazi University Journal Science, Part C, 4(3): 165-171.
  • Referans21 de Araújo C.J., da Silva N.J., da Silva M.M., Gonzalea C.H., 2011. A comparative study of Ni–Ti and Ni–Ti–Cu shape memory alloy processed by plasma melting and injection molding. Materials & Design, 32(10): 4925-4930.
  • Referans22 Thomasová M., Seiner H., Sedlak P., et al., 2017. Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining. Acta Materialia, 123: p. 146-156.