Glikojen Depolarının ve Sıvı Besin Alımının Egzersiz Sırasında Yağ ve Karbonhidrat Kullanımına Etkisi

Amaç: Açlık durumunun yağ metabolizmasını aktive ettiği iyi bilinmektedir. Bunun yanında son yıllarda, egzersize düşük kas glikojen depoları ile başlamanın normal duruma göre yağ metabolizmasını daha iyi aktive ettiği ve antrenmana daha fazla adaptasyon sağladığı ile ilgili çalışmalar artmıştır. Bu çalışma, düşük kas glikojen depoları ile egzersiz yapılmasının yağ metabolizmasını daha fazla etkileyip etkilemediğini test etmek için planlanmış ve yapılmıştır. Bireyler ve Yöntem: Araştırmaya 9 erkek, triatlon sporcusu katılmıştır. Bir hafta ara ile, kahvaltıda sıvı besin verilen veya aç (1 gece) durumda egzersiz denemeleri dengeli randomize, çapraz dizaynda gerçekleştirilmiştir. Çalışma öncesi tüm katılımcılar VO 2 zirve ve zirve güç değerlerinin belirlenmesi için VO 2 zirve testine katılmışlardır. Katılımcılar her iki durumda (Sıvı besin Egzersiz: SE1, SE2 ve Aç Egzersiz: AE1, AE2) %70 VO 2 zirve’de 60 dk süren iki egzersiz denemesini 1 saat dinlenme aralığı ile yapmışlardır. Böylece ikinci egzersiz denemelerinin düşük kas glikojeni ile yapılması hedeflenmiştir. Bulgular: Toplam yağ oksidasyonu, SE1-SE2 (13.4±6.7 g/60 dk ve 23.9±7.6 g/60 dk, p

Effect of Glycogen Stores and Liquid Food Intake on Fat and Carbohydrate Utilization During Exercise

Aim: It is well known that fasting activates fat metabolism. Besides, in recent years many research studies accumulated that commencing exercise with low muscle glycogen is an effective strategy to activate fat metabolism and gain more training adaptation than normal muscle glycogen state. To test whether exercise with low glycogen stores is superior to activate fat metabolism we set up this study. Subjects and Methods: Nine male triathletes participated in this study. Consumption of liquid food breakfast or fasted (overnight) exercise trials were done separated by one week intervals with crossover, counterbalanced randomized design. Prior to the study all the subjects attended to maximal exercise test to determine VO 2 peak and peak power output (PPO). For both trial subjects attended to two 60 min exercise sessions at 70% VO 2 peak (Liquid food Exercise: LE1, LE2 or Fasted Exercise: FE1, FE2) with one hour resting period, thus the second exercise period aimed to be performed with low muscle glycogen stores. Results: Total fat oxidation in LE1 was significantly higher than both LE2 (LE1-LE2; 13.4±6.7 g/60 min versus 23.9±7.6 g/60 min, p

___

  • Achten J, Jeukendrup AE. Optimizing fat oxidation through exercise and diet. Nutrition (Burbank, Los Angeles County, Calif) 2004;20(7-8):716-727.
  • Jeukendrup AE. Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans 2003;31(Pt 6):1270-1273.
  • Nieman DC, Carlson KA, Brandstater ME, Naegele RT, Blankenship JW. Running endurance in 27-h-fasted humans. J Appl Physiol (1985) 1987;63(6):2502-2509.
  • Zinker BA, Britz K, Brooks GA. Effects of a 36-hour fast on human endurance and substrate utilization. J Appl Physiol (1985) 1990;69(5):1849-1855.
  • Loy SF, Conlee RK, Winder WW, Nelson AG, Arnall DA, Fisher AG. Effects of 24-hour fast on cycling endurance time at two different intensities. J Appl Physiol (1985) 1986;61(2):654-659.
  • Ferguson LM, Rossi KA, Ward E, Jadwin E, Miller TA, Miller WC. Effects of caloric restriction and overnight fasting on cycling endurance performance. J Strength Cond Res/National Strength & Conditioning Association 2009;23(2):560-570.
  • Gueye L, Seck D, Samb A, Cisse F, Camara K, Martineaud J. Physiological adaptations to exercise during a short- term fasting. Scr Med (Brno) 2003;76:291-296.
  • Dohm GL, Tapscott EB, Barakat HA, Kasperek GJ. Influence of fasting on glycogen depletion in rats during exercise. J Appl Physiol Respir Environ Exerc Physiol 1983;55(3):830-833.
  • Knapik JJ, Meredith CN, Jones BH, Suek L, Young VR, Evans WJ. Influence of fasting on carbohydrate and fat metabolism during rest and exercise in men. J Appl Physiol (1985) 1988;64(5):1923-1929.
  • Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol (1985) 1985;59(2):429- 433.
  • Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab 2005;289(6):E1023-1029.
  • Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol (1985) 2011;110(1):236-245.
  • Oliver SJ, Laing SJ, Wilson S, Bilzon JL, Walsh N. Endurance running performance after 48 h of restricted fluid and/or energy intake. Med Sci Sports Exerc 2007;39(2):316-322.
  • Couturier K BP, Latour MG, Lavoie JM. Evidence that a decrease in liver glycogen content stimulates FFA mobilization during exercise. Can J Appl Physiol 2000;25(3):141-152.
  • Heyward HV, Stolarczyk, L.M. Applied Body Composition Assesment. USA: Human Kinetics;1996.
  • Hawley JA, Noakes TD. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol 1992;65(1):79-83.
  • Currell K, Jentjens RL, Jeukendrup AE. Reliability of a cycling time trial in a glycogen-depleted state. Eur J Appl Physiol 2006;98(6):583-589.
  • Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 1985;6(4):197-201.
  • Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 1983;55(2):628-634.
  • Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol 2010;95(2):351- 358.
  • Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 2008;105(5):1462-1470.
  • Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc 2010;42(11):2046-2055.
  • Graham TE, Adamo KB. Dietary carbohydrate and its effects on metabolism and substrate stores in sedentary and active individuals. Can J Appl Physiol 1999;24(5):393- 415.
  • Hultman E, Bergström J, Roch-Norlund AE. Glycogen Storage in Human Skeletal Muscle. In: Pernow B, Saltin B, editors. Muscle Metabolism During Exercise. Advances in Experimental Medicine and Biology. 11: Springer US; 1971. p. 273-88.
  • Hultman E, Bergstrom J. Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta medicaScandinavica 1967;182(1):109-117.
  • Ramos-Jiménez A, Hernández-Torres RP, Torres-Durán PV, Romero-Gonzalez J, Mascher D, Posadas-Romero C, et al. The respiratory exchange ratio is associated with fitness indicators both in trained and untrained men: A possible application for people with reduced exercise tolerance. Clin Med Insights Circ Respir Pulm Med 2008;2:1-9.
  • Deuster PA, Heled Y. Chapter 41 - Testing for Maximal Aerobic Power A2 - Seidenberg, Peter H. In: Beutler AI, editor. The Sports Medicine Resource Manual. Philadelphia: W.B. Saunders;2008. p. 520-8.
  • Blomstrand E, Saltin B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol 1999;514( Pt 1):293-302.
  • Schisler JA, Ianuzzo CD. Running to maintain cardiovascular fitness is not limited by short-term fasting or enhanced by carbohydrate supplementation. J Phys Act Health 2007;4(1):101-112.