Geleceğin antibiyotikleri: Antimikrobik etkili katyonik peptitler

Günümüzde, kliniklerde yoğun olarak kullanılan antibiyotiklere karşı bakterilerin yüksek oranda direnç geliştirmesi, araştırmacıları yeni antimikrobik etkili kaynakların arayışına yöneltmiştir. Bunların arasında en fazla öne çıkan grup, canlıların çevrelerini kuşatan mikroorganizmalara karşı savunmalarında doğal bağışıklığın önemli unsurlarından olan antimikrobik etkili katyonik peptitlerdir. Her tür canlıdan izole edilebilen bu maddelerin geniş spektrumlu antibakteriyal, antifungal, antiviral, antiprotozoal, antitümör ve antiendotoksin gibi çeşitli aktiviteleri ve bunlarla ilgili olarak devam eden pek çok başarılı çalışma bulunmaktadır. Katyonik peptitler özellikle, kullanımda olan pek çok antibiyotiğe karşı yüksek düzeyde dirençli bulunan bakteri suşları üzerine olan etkileri ve antibiyotiklerle meydana getirdikleri sinerjist etkileri ile oldukça ümit vaad etmektedirler.

Forthcoming antibiotics: Cationic peptides with antimicrobial activity

Recently, because bacteria develope resistance to antibiotics that are commonly used in clinics, researchers tend to search for new antimicrobial sources. Among these sources, the most remarkable group is the antimicrobial cationic peptides which are the important component in the innate immune response to the surrounding microorganisms. This substances which can be isolated from most of the living organisms, have various activity like broad spectrum antibacterial, antifungal, antiviral, antiprotozoal, antitumor and antiendotoxin and there is a lot of continuing study about this activities. Cationic peptides look promising with their activity against especially multi drug resistant bacteria and synergistic reactions with antibiotics.

___

  • 1. Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff AS: Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity, Biochim Biophys Acta 1995;1237:109.
  • 2. AndreuD,Rivas L:Animal antimicrobial peptides: an overview,Biopolymers 1998;47:415.
  • 3. Axen A, Carlsson A, EngstromA, Bennich H: Gloverin, an antibacterial protein fromthe immune hemolymph of Hyalophora pupae,Eur JBiochem 1997;247:614.
  • 4. Bals R: Epithelial antimicrobial peptides in host defense against infection, Respir Res 2000;1:141.
  • 5. Bateman A, Singh A, Congote LF, Solomon S: The effect of HP-1 and related neutrophil granule peptides on DNA synthesis in HL60 cells, Regul Pept 1991;35:135.
  • 6. Bengoechea JA,Diaz R,Moriyon I: Outermembrane differences between pathogenic and environmentalYersinia enterocolitica biogroups probed with hydrophobic permeants and polycationic peptides, Infect Immun 1996;64:4891.
  • 7. Bierbaum G, Sahl HG: Induction of autolysis of staphylococci by the basic peptide antibiotics pep 5 and nisin and their influence on the activity of autolytic enzymes, Arch Microbiol 1985;141:249.
  • 8. Boman HG,Agerberth B, Boman A:Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides frompig intestine, Infect Immun 1993;61:2978.
  • 9. Breukink E,Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B: Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic, Science 1999;286:2361.
  • 10. Brogden KA, Ackermann M, McCray PB Jr, Tack BF:Antimicrobial peptides in animals and their role in host defences, Int J Antimicrob Agents 2003;22:465.
  • 11. Brogden KA, Kalfa VC, Ackermann MR, Palmquist DE, McCray PB Jr, Tack BF: The ovine cathelicidin SMAP29 kills ovine respiratory pathogens in vitro and in an ovinemodel of pulmonary infection,Antimicrob Agents Chemother 2001;45:331.
  • 12. Cirioni O, Giacometti A, Ghiselli R et al: Single-dose intraperitoneal magainins improve survival in a Gram-negative-pathogen septic shock rat model, Antimicrob Agents Chemother 2002;46:101.
  • 13. Cox AD, Wilkinson SG: Ionizing groups in lipopolysaccharides of Pseudomonas cepacia in relation to antibiotic resistance, Mol Microbiol 1991;5:641.
  • 14. del Castillo FJ, del Castillo I,Moreno F: Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptidemicrocin B17 and alter the activity of DNA gyrase, J Bacteriol 2001;183:2137.
  • 15. Diaz-Achirica P, Ubach J, Guinea A, Andreu D, Rivas L: The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-18), a synthetic cecropinA-mellitin hybrid peptide, Biochem J 1998;330:453.
  • 16. EngstromP, Carlsson A,Erngstrom A,Tao ZJ, Bennich H:The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli, EMBO J 1984;3:3347.
  • 17. Fricker J:A natural antibiotic for cystic fibrosis, Drug Discov Today 2002;7:159.
  • 18. Friedrich C, Scott MG, Karunaratne N,YanH, Hancock RE: Salt-resistant alpha helical cationic antimicrobial peptides,Antimicrob Agents Chemother 1999;43:1542.
  • 19. Ganz T, Lehrer RI: Antibiotic peptides from higher eukaryotes: biology and applications, Mol Med Today 1999;5:292.
  • 20. GiacomettiA, Cirioni O, Del Prete MS, Paggi AM,D’ErricoMM, Scalise G: Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria, Peptides 2001;21:1155.
  • 21. Giacometti A, Cirioni O, Ghiselli R et al: Potential therapeutic role of cationic peptides in three experimentalmodels of septic shock,Antimicrob Agents Chemother 2002;46:2132.
  • 22. Giroir BP, Scannon PJ, Levin M: Bactericidal/permeability-increasing protein-lessons learned from the phase III, randomized, clinical trial of rBPI21 for adjunctive treatment of childrenwith severemeningococcemia, Crit Care Med 2001;29:130.
  • 23. Hancock RE: Peptide antibiotics, Lancet 1997;349:418.
  • 24. Hancock RE: The bacterial outer membrane as a drug barrier, Trends Microbiol 1997;5:37.
  • 25. Hancock RE: Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet Infect Dis 2001;1:156.
  • 26. Hancock RE,ChappleDS: Peptide antibiotics,Antimicrob Agents Chemother 1999;43:1317.
  • 27. Hancock RE, Lehrer R: Cationic peptides: a new source of antibiotics, Trends Biotechnol 1998;6:82.
  • 28. Hancock RE,Rozek A:Role ofmembranes in the activities of antimicrobial cationic peptides, FEMS Microbiol Lett 2002;206:143.
  • 29. Jarosz J: Identification of immune inhibitor fromPseudomonas aeruginosa of inducible cell-free antibacterial activity in insects, Cytobios 1997;89:73.
  • 30. Jarosz J, Glinski Z: Selective inhibition of cecropin-like activity of insect immune blood by protease fromAmerican foulbrood scales, J Invertebr Pathol 1990;56:143.
  • 31. Jensen TS, Pedersen S, Garne S,Heilmann C, Hoiby N, Koch C: Colistin inhalation theraphy in cystic fibrosis patientswith chronic Pseudomonas aeruginosa lung infection, J Antimicrob Chemother 1987;19:831.
  • 32. Jones AL, Beveridge TJ,Woods DE: Intracellular survival of Burkholderia pseudomallei, Infect Immun 1996;64:782.
  • 33. Kamysz W, Okroj M, Lukasiak J: Novel properties of antimicrobial peptides, Acta Biochim Pol 2003;50:461.
  • 34. La Rocca P, Biggin PC, Tieleman DP, SansomMSP: Simulation studies of the interaction of antimicrobial peptides and lipid bilayers, Biochim Biophys Acta 1999;1462:185.
  • 35. Lamb HM, Wiesman LR: Pexiganan acetate, Drugs 1998;56:1047.
  • 36. Lichtenstein A,Ganz T, Selsted ME, Lehrer RI: In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes, Blood 1986;68:1407.
  • 37. Lysenko ES,Gould J,Bals R,Wilson JM,Weiser JN:Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory track, Infect Immun 2000;68:1664.
  • 38. MacFarlane ELA, Kwasnicka A, Hancock RE: Role of Pseudomonas aeruginosa PhoP-PhoQ resistance to antimicrobial cationic peptides and aminoglycosites, Microbiology 2000;146:2543.
  • 39. MacFarlane ELA, Kwasnicka A, Ochs MM, Hancock RE: PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane proteinOprHand polymyxinB resistance,MolMicrobiol 1999;34:305.
  • 40. Maddox MW, Longo ML: A Monte Carlo study of peptide insertion into lipid bilayers: equilibriumconformations and insertion mechanisms, Biophys J 2002;82:244.
  • 41. Madigan MT, Martinko JM, Parker J: Biology of Microorganisms, 8. baskı, s. 52, Prentice Hall International Inc., New Jersey, NJ (1997).
  • 42. Matsuyama K, Natori S:Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly), J Biochem 1990;108:128.
  • 43. Matsuzaki K: Why and how are peptide-lipid interactions utilized for self-defense?Magainins and tachyplesins as archetypes, BiochimBiophys Acta 1999;1462:1.
  • 44. Matsuzaki K, Sugishita K, Fujii N, Miyajima K: Molecular basis for membrane selectivity of an antimicrobial peptide,magainin 2, Biochemistry 1995;34:3423.
  • 45. Mosca DA, Hurst MA, SoW, Viajar BSC, Fujii CA, Falla TJ: IB-367, a protegrin peptide with in vitro and in vivo activities against themicroflora associated with oral mucositis, Antimicrob Agents Chemother 2000; 44:1803.
  • 46. Nicolas P, Vanhoye D, Amiche M: Molecular strategies in biological evolution of antimicrobial peptides, Peptides 2003;24:1669.
  • 47. Nos-Barbera S, Portoles M, Morilla A, Andreu D, Paterson CA: Effect of hybrid peptides of cecropin A and mellitin in an experimental model of bacterial keratitis, Cornea 1997;16:101.
  • 48. Oren Z, ShaiY:Mode of action of linear amphipathic a-helical antimicrobial peptides, Biopolymers 1998;47:451.
  • 49. Park CB, Kim HS, Kim SC: Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions, Biochem Biophys Res Commun 1998;244:253.
  • 50. Patrzykat A, Zhang L, Mendoza V, Iwama GK, Hancock RE: Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin, Antimicrob Agents Chemother 2001;45:1337.
  • 51. Pellegrin P, Menard C, Mery J, Lory P, Charnet P, Bennes R: Cell cycle dependent toxicity of an amphiphilic synthetic peptide, FEBS Lett 1997;418:101.
  • 52. Peschel A: How do bacteria resist human antimicrobial peptides?, Trends Microbiol 2002;10:179.
  • 53. Peschel A, Collins LV: Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin, Peptides 2001;22:1651.
  • 54. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F: Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides, J Biol Chem 1999;274:8405.
  • 55. Piers KL, Brown MH, Hancock RE: Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria, Gene 1993;134:7.
  • 56. Powers JP, Hancock RE: The relationship between peptide structure and antibacterial activity, Peptides 2003;24:1681.
  • 57. Reddy KVR, Yedery RD, Aranha C: Antimicrobial peptides: premises and promises, Antimicrob Agents 2004;24:536.
  • 58. Resnick NM, Maloy WL, Guy HR, Zasloff M: A novel endopeptidase from Xenopus that recognizes alpha-helical secondary structure, Cell 1991;66:541.
  • 59. Sawyer JG,Martin NL, Hancock RE: Interaction ofmacrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa, Infect Immun 1998;56:693.
  • 60. Scocchi M, Romeo D, Cinco M: Antimicrobial activity of two bactenecins against spirochetes, Infect Immun 1993;61:3081.
  • 61. ScottMG, Gold MR, Hancock RE: Interaction of cationic peptides with lipoteichoic acid and Gram-positive bacteria, Infect Immun 1999;67: 6445.
  • 62. Sears PM, Smith BS, Stewart WK et al: Evaluation of a nisin-based germicidal formulation on teat skin of live cows, J Dairy Sci 1992;75: 3185.
  • 63. Shafer WM, Qu XD, Waring AJ, Lehrer RI: Modulation of Neisseria gonorrhoaeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family, Proc Natl Acad Sci USA 1998;95:1829.
  • 64. Shai Y,Oren Z: From“carpet”mechanismto de-novo designed diastereometric cell-selective antimicrobial peptides, Peptides 2001;22:1629.
  • 65. Sidorczyk Z, Zahringer U, Rietschel ET: Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis remutant, Eur J Biochem 1983;137:15.
  • 66. Sieprawska-Lupa M,Mydel P, Krawczyk K et al: Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases, Antimicrob Agents Chemother 2004;48:4673.
  • 67. Steinberg DA, HurstMA, Fuji CA et al: Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity, Antimicrob Agents Chemother 1997;41:1738.
  • 68. Stolzenberg ED,Anderson GM,Ackermann MR, Whitlock RH, Zasloff M: Epithelial antibiotic induced in states of disease, Proc Natl Acad Sci USA 1997;94:8686.
  • 69. Travis SM, Singh PK, Welsh MJ: Antimicrobial peptides and proteins in the innate defense of the airway surface, Curr Opin Immunol 2001; 13:89.
  • 70. Tsang JC, Weber DA, Brown DA: Evidence for complex formation between polymyxin B and lipopolysaccharides from Serratiamarcescens, J Antibiot 1976;29:735.
  • 71. Ulvatne H,Haukland HH, Samuelsen O,Kramer M,Vorland LH: Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B, J Antimicrob Chemother 2002;50:461.
  • 72. Velasco M,Diaz-Guerra MJ, Diaz-Achirica P,Andreu D, Rivas L, Bosca L:Macrophage triggering with cecropinAandmellitin-derived peptides induces type II nitric oxide synthase expression, J Immunol 1997;158:4437.
  • 73. Vieser LG, Hiemstra PS, Van Den Barselaar MT, Ballieux PA, Van Furth R: Role of YadA in resistance to killing of Yersinia enterocolitica by antimicrobial polypeptides of human granulocytes, Infect Immun 1996; 64:1653.
  • 74. Wiedemann I, Breukink E, Van Kraaij C et al: Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity, J Biol Chem 2001;276:1772.
  • 75. Yang L Harroun TA,Weiss TM, Ding L, Huang HW: Barrel-stave model or toroidal model? A case study on mellitin pores, Biophys J 2001;81: 1475.
  • 76. Yeaman MR, Yount NY: Mechanisms of antimicrobial peptide action and resistance, Pharmacol Rev 2003;55:27.
  • 77. Yoo YC,Watanabe R, KoikeY et al:Apoptosis in human leukemic cells induced by lactoferricin, a bovinemilk protein-derived peptide: involvement of reactive oxygen species, Biochem Biophys Res Commun 1997;237: 624.
  • 78. Zasloff M: Reconstructing one of nature’s designs, TİPS 2000;21:236.
  • 79. Zhang L, Rozek A, Hancock R E: Interaction of cationic antimicrobial peptides with model membranes, J Biol Chem 2001;276:35714.
ANKEM Dergisi-Cover
  • ISSN: 1301-3114
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Antibiyotik ve Kemoterapi Derneği