Antimikrobik etkili katyonik peptitlerin tek başına ve kombinasyon halindeki etkilerinin araştırılması

Günümüzde, antibiyotiklere karşı görülen direncin oldukça yüksek düzeylere ulaşması, araştırmacıları yeni antimikrobik etkili kaynakların arayışına yöneltmiştir. Yakın gelecekte kullanılması düşünülen bu maddeler arasında en fazla umut vaat eden grup antimikrobik etkili katyonik peptitlerdir. Çalışmamızda farklı yapılardaki katyonik peptitlerden kolistin metansülfonat (kolimisin), mellitin ve nisinin hastalardan infeksiyon etkeni olarak izole edilen Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, metisiline duyarlı Staphylococcus aureus (MSSA), metisiline dirençli S.aureus (MRSA) ve Enterococcus faecalis suşları üzerine tek başına ve sık kullanılan antibiyotiklerden amikasin, seftazidim, imipenem, siprofloksasin, ampisilin, eritromisin ve vankomisinle kombinasyon halindeki in-vitro etkileri araştırılmıştır. Mikrodilüsyon yöntemi kullanılarak yapılan çalışmalarda elde edilen bulgulara göre Gram negatif bakterilerden P.aeruginosa, E.coli ve K.pneumoniae suşlarına karşı kolistin metansülfonatın MİK90 değerleri sırasıyla 2 µg/ml, 0.5 µg/ml ve 1 µg/ml; mellitinin ise >64 µg/ml, 8 µg/ml ve 32 µg/ml; Gram pozitif bakterilerden MSSA, MRSA ve E.faecalis suşlarına karşı mellitinin MİK90 değerleri sırasıyla 8 µg/ml, 8 µg/ml ve 8 µg/ml; nisinin ise 16 µg/ml, 16 µg/ml ve 16 µg/ml olarak bulunmuştur. Antimikrobik etkili katyonik peptitlere ait MBK değerleri genellikle MİK değerlerine eşit ya da iki katı olarak bulunmuştur. Kombinasyon çalışmalarında en fazla sinerjist etki kolistin metansülfonat-siprofloksasin kombinasyonu ile (% 54) P.aeruginosa, kolistin metansülfonat-imipenem kombinasyonu ile (sırasıyla % 50 ve % 54) E.coli ve K.pneumoniae, nisin-imipenem kombinasyonu ile (% 67) MRSA, nisin-ampisilin kombinasyonu ile (sırasıyla % 67 ve % 47) MSSA ve E.faecalis suşlarına karşı elde edilmiş, denenen kombinasyonların hiçbirinde antagonist etki görülmemiştir.

In-vitro activities of antimicrobial cationic peptides alone and in combination with antibiotics

Since levels of antibiotic resistance have been increasing at an alarming rate worldwide, cationic peptides seems to be the most preferable class of antimicrobial substances in the near future as therapeutic agents. In this study, the in vitro activities of antimicrobial cationic peptides colistin methanesulphonate (colimycin), mellitin and nisin alone and in combination with frequently used antibiotics such as amikacin, ceftazidime, imipenem, ciprofloxacin, ampicillin, erythromycin and vancomycin were assessed in clinical isolates of Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S.aureus (MRSA) and Enterococcus faecalis. Using the microdilution method, MIC90 values of cationic peptides against Gram negative P.aeruginosa, E.coli and K. pneumoniae strains were 2 µg/ml, 0.5 µg/ml and 1 µg/ml with colistin methanesulphonate, >64 µg/ml, 8 µg/ml and 32 µg/ml with mellitin, respectively. Against Gram positive MSSA, MRSA and E.faecalis strains MIC90 values were 8 µg/ml, 8 µg/ml and 8 µg/ml with mellitin, 16 µg/ml, 16 µg/ml and 16 µg/ml with nisin, respectively. The MBC values were generally equal or two times greater than those of MIC values. In combination studies synergistic interactions were most requent with colistin methanesulphonate-ciprofloxacin combination against P.aeruginosa (54 %); with colistin methanesulphonateimipenem combination against E.coli and K.pneumoniae (50 % and 54 %, respectively); with nisin-imipenem combination against MRSA (67 %) and with nisin-ampicillin combination against MSSA and E.faecalis (67 % and 47 %, respectively). None of the combinations showed antagonistic effect.

___

  • 1. Bechinger B: Structure and functions of channel-forming peptides: magainins, cecropins, mellitin and alamethicin, J Membr Biol 1997;156 (3):197-211.
  • 2. Eliopoulos GM,Moellering Jr RC:Antimicrobial combination, “Lorian V (ed.): Antibiotics in LaboratoryMedicine, 4. baskı” kitabında s. 330- 96,William and Wilkins, Baltimore (1996).
  • 3. Ganz T, Lehrer RI: Antibiotic peptides from higher eukaryotes: biology and applications, Mol Med Today 1999;5(7):292-7.
  • 4. Giacometti A, Cirioni O, Barchiesi F ve ark: In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically, Antimicrob Agents Chemother 2000;44(6):1694-6.
  • 5. Giacometti A, Cirioni O, Barchiesi F, Scalise G: In-vitro activity and killing effect of polycationic peptides onmethicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics, DiagnMicrobiol Infect Dis 2000;38(2):115-8.
  • 6. Giacometti A, Cirioni O, Del Prete MS, Paggi AM, D’Errico MM, ScaliseG:Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria, Peptides 2000;21(8):1155-60.
  • 7. Hancock RE: Peptide antibiotics, Lancet 1997;349(9049):418-22.
  • 8. Hancock RE: Minimal inhibitory concentration (MIC) determination for cationic antimicrobial peptides by the modified microtitre broth dilution method. Recently modified methods used by the Hancock Laboratory, Vancouver, B.C. (1998).
  • 9. Hancock RE: Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet Infect Dis 2001;1(3):156-64.
  • 10. Kamysz W, Okroj M, Lukasiak J: Novel properties of antimicrobial peptides, Acta Biochim Pol 2003;50(2):461-9.
  • 11. Martin EC, ChaseGD, Cox HR: Rhemington’s Pharmaceutical Sciences, 13. baskı, s.1272, Mack Publishing Co., Eoston, Pa (1965).
  • 12. McAuliffe O, Ross RP, Hill C: Lantibiotics: structure, biosynthesis and mode of action, FEMS Microbiol Rev 2001;25(3):285-308.
  • 13. National Committee for Clinical Laboratory Standards: Methods for Determining Bactericidal Activity of Antimicrobial Agents, Approved Guideline.M26-A,National Committee for Clinical Laboratory Standards, Wayne, Pa (1999).
  • 14. National Committee for Clinical Laboratory Standards: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A5, 5th ed., National Committee for Clinical Laboratory Standards, Wayne, Pa (2000).
  • 15. National Nasocomial Infections Surveillance (NNIS) System Report: Data summary from January 1992 through June 2004, issued October 2004, Am J Infect Control 2004;32(8):470-85.
  • 16. Sawyer JG,Martin NL, Hancock RE: Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa, Infect Immun 1988;56(3):693-8.
  • 17. Yeaman MR, Yount NY: Mechanisms of antimicrobial peptide action and resistance, Pharmacol Rev 2003;55(1):27-55.