RV1463 OLASI KORUNMUŞ ATP BAĞLAYICI PROTEİNİN HESAPLAMALI YAKLAŞIMLA MOLEKÜLER TEMEL BÜTÜNLEŞTİRİCİ ANALİZİ

Amaç: Tüberküloz, patojeni olan Mycobacterium tuberculosis H37Rv'nin (M. tuberculosis) şiddetle değişen dinamiği nedeniyle yıllardan beri küresel bir salgın olmuştur. Bu patojenin durumu daha da kötüleşmektedir ve üstesinden gelmek zorlaşmaktadır. Bu yazıda, metal iyonunun plazma membranları boyunca taşınmasına yardımcı olan ve sonuçta bir elektrokimyasal gradyan oluşturan Mycobacterium tuberculosis H37Rv'nin (M. tuberculosis) ATP bağlayıcı proteini için hesaplama yaklaşımlarını kullandı. Rv1463, ATP bağlama motifi (WalkerA) (GXXXXGKS / T) ve (Walkera) (DEXXXXXD) içeren varsayımsal bir protein ve bu motiflerin ATP bağlama ve hidrolizleme aktivitelerindeki önemi üzerinde duruldu. ATP bağlanma özelliğini, transkripsiyonel düzenleyici protein ile etkileşime girerek ve etkileşimli bileşikler magnezyum (Mg) ve Adenosin di fosfat (ADP) ile gösterir.

MOLECULAR BASIS AND INTEGRATIVE ANALYSIS OF Rv1463 AS PROBABLE CONSERVED ATP-BINDING PROTEIN BY COMPUTATIONAL APPROACH

Objective: Tuberculosis as a global epidemic since years due to vigorously changing dynamics of its causal pathogen, Mycobacterium tuberculosis H37Rv (M. tuberculosis). This pathogen has worsened the situation therefore making it so challenging and hard to overcome. In this manuscript, we have used the computational approaches for ATP-binding protein of Mycobacterium tuberculosis H37Rv (M. tuberculosis) that helps in transportation of metal ion across the plasma membranes and resultant generating an electrochemical gradient. Rv1463 a hypothetical protein possessing ATP binding motif (WalkerA) (GXXXXGKS/T), and (Walker B) (DEXXXXXD) and significance of these motifs in ATP binding and hydrolyzing activities. It shows the ATP-binding property by interacting with transcriptional regulatory protein and showing the interacted compounds as magnesium (Mg) and Adenosine di phosphate (ADP).

___

  • 1. Simmons, J.D., Stein, C.M., Seshadri, C., Campo, M., Alter, G., Fortune, S., Schurr, E., Wallis, R.S., Churchyard, G., Mayanja-Kizza, H., Boom, W.H., Hawn, T.R. (2018). Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nature Reviews Immunology, 18(9), 575 – 589.
  • 2. Brennan, P.J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis, 83(1‒3), 91 ‒ 97.
  • 3. Beg, M.A., Shivangi Thakur S.C., Meena, L.S. (2018). Structural Prediction and Mutational Analysis of Rv3906c Gene of Mycobacterium tuberculosis H37Rv to Determine Its Essentiality in Survival. Advances in Bioinformatics, 6152014.
  • 4. Glaziou, P., Floyd, K., Raviglione, M.C. (2018). Global Epidemiology of Tuberculosis. Seminars in Respiratory and Critical Care Medicine, 39(3), 271 – 285.
  • 5. Ndlovu, H., Marakalala, M.J. (2016). Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Frontiers in Immunology, 7, 434.
  • 6. Silva Miranda, M., Breiman, A., Allain, S., Deknuydt, F., Altare, F. (2012). The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clinical and Developmental Immunology, 139127.
  • 7. Russell, D.G., Cardona, P.J., Kim, M.J., Allain, S., Altare, F. (2009). Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 10(9), 943 ‒ 948.
  • 8. Gandhi, N.R., Nunn, P., Dheda, K., Schaaf, H.S., Zignol, M., van Soolingen, D., Jensen, P., Bayona, J. (2010). Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. The Lancet, 375(9728), 1830 – 1843.
  • 9. Shivangi, Beg, A., Meena, S., Meena, L.S. (2017). To Find out the Essentiality of Rv0526 Gene in Virulence of Mycobacterium Tuberculosis by using in silico Approaches. Open Journal of Bacteriology, 1(1), 13 ‒ 15.
  • 10. Qiu, W., Liesa, M., Carpenter, E.P., Shirihai, O.S. (2015). ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione. PLoS One, 10(6),e0129772.
  • 11. Braibant, M., Gilot, P., Content, J. (2000). The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiology Reviews, 24(4), 449 – 467.
  • 12. Cassio Barreto de Oliveira, M., Balan, A. (2020). The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. Biology, 9(12),E443.
  • 13. Soni, D.K., Dubey, S.K., Bhatnagar, R. (2020). ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerging Microbes & Infections, 9(1), 207 – 220.
  • 14. Balakrishnan, L., Venter, H., Shilling, R.A., van Veen, H.W. (2004). Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. Journal of Biological Chemistry, 279(12), 11273 – 11280.
  • 15. Ambudkar, S.V., Kim, I.W., Xia, D., Sauna, Z.E. (2006). The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Letters, 580(4), 1049 – 1055.
  • 16. Orelle, C., Dalmas, O., Gros, P., Di Pietro, A., Jault, J.M. (2003). The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. Journal of Biological Chemistry, 278(47), 47002 – 47008.
  • 17. Chen, M., Abele, R., Tampé, R. (2004). Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). Journal of Biological Chemistry, 279(44), 46073 – 46081.
  • 18. Vinothkumar, K.R., Henderson, R. (2010). Structures of membrane proteins. Quarterly Reviews of Biophysics, 43(1), 65 – 158.
  • 19. Marinko, J.T., Huang, H., Penn, W.D., Capra, J.A., Schlebach, J.P., Sanders, C.R. (2019). Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chemical Reviews, 119(9), 5537 – 5606.
  • 20. Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F., Kim, S.H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature, 396(6712), 703 – 707.
  • 21. Kapopoulou, A., Lew, J.M., Cole, S.T. (2011). The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis, 91(1), 8 – 13.
  • 22. Shivangi, Beg, M.A., Meena, L.S. (2018). Insights of Rv2921c (Ftsy) Gene of Mycobacterium tuberculosis H37Rv To Prove Its Significance by Computational Approach. Biomedical Journal of Scientific & Technical Research, 12(2), 9147 ‒ 9157.
  • 23. Beg, M.A., Shivangi, Thakur, S.C., Meena, L.S. (2019). Systematical analysis to assist the significance of Rv1907c gene with the pathogenic potentials of Mycobacterium tuberculosis H37Rv. Journal of Biotechnology and Biomaterials, 8(4), 286.
  • 24. Sievers, F., Higgins, D.G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology, 1079, 105 – 116.
  • 25. Von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Research, 31(1), 258 – 261.
  • 26. Beg, M.A., Athar, F., Meena, L.S. (2019). Significant Aspect of Rv0378 Gene of Mycobacterium tuberculosis H37Rv Reveals the PE_PGRS like Properties by Computational Approaches. Journal of Biotechnology and Biomedicine, 2(1), 24 – 39.
  • 27. Rashid, M., Saha, S., Raghava, G.P. (2007). Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics, 8, 337.
  • 28. Yu, C.S., Cheng, C.W., Su, W.C., Chang, K.C., Huang, S.W., Hwang, J.K., Lu, C.H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 9(6), e99368.
  • 29. Beg, M.A., Shivangi, Athar, F., Meena, L.S. (2018). Structural and Functional Annotation of Rv1514c Gene of Mycobacterium tuberculosis H37Rv As Glycosyl Transferases. Journal of Advanced Research in Biotechnology, 3(2), 1 ‒ 9.
  • 30. Bowie, J.U., Lüthy, R., Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164 – 170.
  • 31. Buchan, D.W.A., Jones, D.T. (2019). The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research, 47(W1), 402 – 407.
  • 32. Beg, M.A., Thakur, S.C., Athar, F. (2020). Computational annotations of mycobacterial Rv3632 that confers its efficient function in cell wall biogenesis. Journal of Bacteriology & Mycology: Open Access, 8(2),46 ‒ 53.
  • 33. Ma, J., Wang, S., Zhao, F., Xu, J. (2013). Protein threading using context-specific alignment potential. Bioinformatics, 29(13), 257 – 265.
  • 34. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), 252 – 258.
  • 35. Beg, M.A., Thakur, S.C., Athar, F. (2020). Molecular modeling and in silico characterization of mycobacterial Rv3101c and Rv3102c proteins: prerequisite molecular target in cell division. Pharmacy & Pharmacology International Journal, 8(4), 234 – 243.
  • 36. Ho, B.K., Brasseur, R. (2005). The Ramachandran plots of glycine and pre-proline. BMC Structural Biology, 5,14.
  • 37. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., Elofsson, A. (2001). A study of quality measures for protein threading models. BMC Bioinformatics, 2,5.
  • 38. Wallner, B., Elofsson, A. (2003). Can correct protein models be identified? Protein Science, 12(5), 1073 ‒ 1086.
  • 39. Beg, M.A., Athar, F. (2020). Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNAdependent-RNA polymerase activity of NSP12 of the SARS CoV- 2 (COVID-19). Pharmacy & Pharmacology International Journal, 8(3), 163 ‒ 172.
  • 40. Trott, O., Olson, A.J. (2010). Auto Dock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455 – 461.
  • 41. Beg, M.A., Athar, F. (2020). Pharmacokinetic and molecular docking studies of Achyranthes aspera phytocompounds to exploring potential anti-tuberculosis activity. Journal of Bacteriology & Mycology: Open Access, 8(1), 18 ‒ 27.
  • 42. Biovia, D.S. (2015). Discovery studio modelling environment. San Diego. Dassault Systems.
  • 43. Beg, M.A., Athar, F. (2020). Computational method in COVID-19: Revelation of Preliminary mutations of RdRp of SARS CoV-2 that build new horizons for therapeutic development. Journal of Human Virology & Retrovirology, 8(3), 62 ‒ 72.
  • 44. Rodrigues, C.H., Pires, D.E., Ascher, D.B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), 350 – W355.
  • 45. Shivangi, Beg, M.A., Meena, L.S. (2019). Mutational effects on structural stability of SRP pathway dependent cotranslational protein ftsY of Mycobacterium tuberculosis H37Rv. Gene Reports, 15, 100395.
  • 46. Beg, M. A., Hejazi, I. I., Thakur, S. C., & Athar, F. (2021). Domain-wise differentiation of Mycobacterium tuberculosis H37 Rv hypothetical proteins: A roadmap to discover bacterial survival potentials. Biotechnology and applied biochemistry, 10.1002/bab.2109.
  • 47. Hejazi, I. I., Beg, M. A., Imam, M. A., Athar, F., & Islam, A. (2021). Glossary of phytoconstituents: Can these be repurposed against SARS CoV-2? A quick in silico screening of various phytoconstituents from plant Glycyrrhiza glabra with SARS CoV-2 main protease. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 150, 112057. Advance online publication. https://doi.org/10.1016/j.fct.2021.112057
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

TRİİYODOANİLİN’İN SENTEZLENMESİ, NANOSÜSPANSİYONLARININ HAZIRLANMASI, İN VİTRO KARAKTERİZASYONU VE RADYOKONTRAST ÖZELLİKLERİNİN İNCELENMESİ

Mehmet KOCA, Emrah ÖZAKAR, Rukiye SEVİNÇ ÖZAKAR

İLAÇ KEŞFİ VE GELİŞTİRİLMESİNDE YAPAY ZEKÂ

İrem Nur ÇELİK, Firdevs Kübra ARSLAN, Ramazan TUNÇ, İlkay YILDIZ

RV1463 OLASI KORUNMUŞ ATP BAĞLAYICI PROTEİNİN HESAPLAMALI YAKLAŞIMLA MOLEKÜLER TEMEL BÜTÜNLEŞTİRİCİ ANALİZİ

Md Amjad BEG, Mustafa SEVİNDİK, Shahid HAİDER, Preeti SONİ, Priya BHATİA, Shahzul HASAN, Richa YADAV, Fareeda ATHAR

COVİD-19 PANDEMİSİNİN TOPLUM ECZACILIĞI HİZMETLERİNE ETKİLERİ

Muammer ÇALIKUŞU, Gülsen GÜNEŞ, Gülbin ÖZÇELİKAY

KATI LİPİT NANOPARTİKÜLLER VE BEYNE ÖZGÜ İLAÇ TAŞIYICI SİSTEM OLARAK UYGULAMALARI

Mahmut Ozan TOKSOY, Fahriye Figen TIRNAKSIZ

BETA-SİTOSTEROL VE ANTİNOSİSEPTİF ETKİ MEKANİZMASI

Ayşe Arzu ŞAKUL, Mehmet Evren OKUR

HPTLC İLE CALOTROPIS GIGANTEA VE CALOTROPIS PROCERA YAPRAĞINDAKİ β-SİTOSTEROLÜN TANIMLANMASI VE MİKTAR TAYİNİ

Shripad BAİRAGİ, Prashant GHULE, Ritu GİLHOTRA

BAZI 4,5-DİHİDRO-1H-PİRAZOL VE ŞALKON TÜREVLERİNİN ANTİMİKROBİYAL VE ANTİTÜBERKÜLER ETKİLERİ ÜZERİNE ARAŞTIRMALAR

Begüm EVRANOS AKSÖZ, Fatma Kaynak KAYNAK ONURDAĞ, Erkan AKSÖZ, Selda ÖZGEN

CuO VE GRAFİT TOZUNA DAYALI ELEKTROKİMYASAL NANOSENSÖR İMALATI VE GERÇEK NUMUNELERDE OP (ORGANOFOSFOR) PESTİSİTLERİNİN ESER MADDE ANALİZİ İÇİN UYGULAMASI

Ratnesh DAS, Aayushı CHANDERIYA

İNFANTİL KOLİKLİ BİR BEBEKTE ELMA YAĞI NEDENLİ UYKUYA EĞİLİM

Ayşegül BÜKÜLMEZ, Ayşegül KÖROĞLU, Zeynep YEŞİLDAĞ, Gülmira ÖZEK