CuO VE GRAFİT TOZUNA DAYALI ELEKTROKİMYASAL NANOSENSÖR İMALATI VE GERÇEK NUMUNELERDE OP (ORGANOFOSFOR) PESTİSİTLERİNİN ESER MADDE ANALİZİ İÇİN UYGULAMASI

Amaç: Karmaşık olmayan, düşükmaliyetli, son derece seçici ve hassas elektrokimyasal olarak aktif nanosensörler,bir öncü olarak bakır tuzu, yüzey aktif maddeler ve yapısal yönlendirme ajanları kullanılarak sentezlenmiştir. Sentezlenen bu CuO Nanopartiküller (NP'ler) elektroaktiftir ve elektro katalitik aktiviteyi ve hassasiyeti artırmak için grafit tozu (CPE) ile modifiye edilerek EC işlemleri de gerçekleştirilmiştir.

FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES

Objective: Uncomplicated, low-cost, highly discerning, and sensitive electrochemically active nanosensors have been synthesized using copper salt as a precursor, surfactants, and structural directing agents. These synthesized CuO Nanoparticles (NPs) were electroactive and EC treatments were also performed by modifying these NPs with graphite powder (CPE) to enhance the electrocatalytic activity, sensitivity.

___

  • 1. Imran, K., Umar, J. P., Sneha, W., Ratnesh, D., Sudhir, N. L. (2016). Fabrication of electrochemical nanosensor based on polyaniline film-coated AgNP-MWCNT-modified GCE and its application for trace analysis of fenitrothion. Ionics, 23, 1293-1308.
  • 2. Hanrahan, G., Patil, D.G., Wang, J. (2004). EC sensors for environmental monitoring: design, development and applications. Journal of Environmental Monitoring, 6, 657-664.
  • 3. Pandit, U.J., Khan, I., Wankar, S., Raj, K.K., Limaye S.N. (2015). Development of an EC method for the determination of Bicalutamide at the SWCNT/CPE in pharmaceutical preparations and human biological fluids. Analytical Methods, 7, 10192-10198.
  • 4. Habibi, B., Jahanbakhshi, M. (2014). Silver NPs/multi walled carbon nanotubes nanocomposite modified electrode: voltammetric determination of clonazepam. ElectrochimicaActa, 118, 10- 17.
  • 5. Zeng, Y., Yu, D., Yu, Y., Zhou, T., Shi G. (2012). Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly (acrylamide) nanocomposite film modified electrode. Journal of Hazard Material, 217-218, 315-322.
  • 6. Wang, J. (2005). Carbon-nanotube based EC biosensors: a review. Electroanalysis, 17, 7-14.
  • 7. Zargar, B., Parham, H., Hatamie, A. (2015). EC investigation and stripping voltammetric determination of captopril at CuO NPs/multi-wall carbon nanotube nanocomposite electrode in tablet and urine samples. Analytical Methods, 7, 1026-1035.
  • 8. Afkhami, A., Ghaedi, H., Madrakian, T., Nematollahi, D., Mokhtari, B. (2014). Electrooxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nano tubes. Talanta, 121, 1-8.
  • 9. Pandit, U.J., Khan, I., Wankar, S., Raj, K.K., Limaye, S.N. (2016). Development of EC method for determination of Tolvaptan at MWCNT/CPE in pharmaceutical preparations and human biological fluids. Analytical Chemistry Letters, 5, 338-350.
  • 10. Kumaravel, A., Chandrasekaran, M. (2011). A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. Journal of Electroanalytical Chemistry, 650, 163-170.
  • 11. Abbar, J.C., Nandibewoor, S.T. (2012). Development of EC method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids. Industrial and Engineering Chemistry Results, 51,111-118.
  • 12. Li, C., Wang, C., Ma, Y., Hu, S. (2004). Voltammetric determination of trace amounts of fenitrothion on a novel nano-TiO2 polymer film electrode. MicrochimicaActa, 148, 27-33.
  • 13. Brahman, P.K., Dar, R.A., Pitre K.S. (2013). Conducting polymer film based EC sensor for the determination of amoxicillin in micellar media. Sensors Actuators B, 176, 307-314.
  • 14. Dar, R.A., Brahman, P.K., Tiwari, S., Pitre, K.S. (2012). EC studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study. Colloid Surf B: Biointerfaces, 98, 72-79.
  • 15. Kargozar, S., Mozafari, M. (2018). Nanotechnology and Nanomedicine: Start small, think big. Material Today, 5(7), 15492–15500.
  • 16. Liu, J. F., Su, B., Lagger, G., Tacchini, P., Girault, H.H. (2006). Antioxidant redox sensors based on DNA modifed carbon screen-printed electrodes. Analalytical Chemistry, 78(19), 6879- 6884.
  • 17. Fatima, M., Silvana, A. (2020). Nanotechnology-based approaches for food sensing and packaging applications. Royal Society of Chemistry Advances, 10(33), 19309-19336.
  • 18. Authority, E. F. S., Schoonjans, R.,Eryasa,B. (2019). Annual report of the EFSA Scientific Network of Risk Assessment of Nanotechnologies in Food and Feed for 2018. EFSA Supporting Publications, 16(4):1626E, 1-11.
  • 19. Hongyong, X., Qinghua, C., Yuan, L., Zhenxing, Z., Lina, C. L.,Haijun, Y.(2020). Sensors applied for the detection of pesticides and heavy metals in freshwaters. Hindawi Journal of Sensors, 2020:8503491, 1-22.
  • 20. Garcia, C. V., Shin, G. H., Kim, J. T. (2018). Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science and Technology, 82, 21-31.
  • 21. Bayne, S., Carlin, M. (2017). Forensic Applications of High Performance Liquid Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA.
  • 22. Carlin, M.G., Dean, J.R. (2017). Forensic Applications of Gas Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA.
  • 23. Stuart, B.H. (2013) Forensic Analytical Techniques; Wiley & Sons Ltd.: Chichester, UK.
  • 24. Smith, J.P., Randviir, E.P., Banks, C.E. (2016). An introduction to forensic electrochemistry. In Forensic Science: A Multidisciplinary Approach; Katz, E., Halámek, J., Eds.; Wiley-VCH: Weinheim, Germany.
  • 25. Yáñez-Sedeño, P., Agüí, L., Villalonga, R.,Pingarrón, J.M. (2014). Biosensors in forensic analysis: A review. AnalyticaChimicaActa, 823, 1-19.
  • 26. Khan, G.A., War, J.A., Naikoo, G.A., Pandit, U. J., Das, R. (2016). Porous CuO catalysed green synthesis of some novel 3-alkylated indoles as potent antitubercular agents. Journal of Saudi Chemical Society,1-10
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

KATI LİPİT NANOPARTİKÜLLER VE BEYNE ÖZGÜ İLAÇ TAŞIYICI SİSTEM OLARAK UYGULAMALARI

Mahmut Ozan TOKSOY, Fahriye Figen TIRNAKSIZ

CUPANIOSCORDUM SEKSİYONUNA AİT ÜÇ ALLIUM L. (AMARYLLIDACEAE) TÜRÜNÜN YAPRAK VE SKAPUS ANATOMİSİ

Gülnur EKŞİ, Gülderen YILMAZ, Mehmet BONA, Ayşe Mine GENÇLER ÖZKAN

KULLANILMIŞ KOZMETİK ÜRÜNLERDEN İZOLE EDİLEN AEROP BAKTERİLER VE ANTİBİYOTİK DİRENCİNİN DEĞERLENDİRİLMESİ

Ömer AKGÜL, Kadir BAKAN

İNFANTİL KOLİKLİ BİR BEBEKTE ELMA YAĞI NEDENLİ UYKUYA EĞİLİM

Ayşegül BÜKÜLMEZ, Ayşegül KÖROĞLU, Zeynep YEŞİLDAĞ, Gülmira ÖZEK

TRİİYODOANİLİN’İN SENTEZLENMESİ, NANOSÜSPANSİYONLARININ HAZIRLANMASI, İN VİTRO KARAKTERİZASYONU VE RADYOKONTRAST ÖZELLİKLERİNİN İNCELENMESİ

Mehmet KOCA, Emrah ÖZAKAR, Rukiye SEVİNÇ ÖZAKAR

BAZI NAFTOKİNON TÜREVLERİ İLE İLAÇ MADDELERİ ARASINDAKİ ETKİLEŞİM ÜRÜNLERİNİN YAPISININ İNCELENMESİ

Anastasiia DONCHENKO, Kateryna MİEDVİEDİEVA, Oleksii VOSKOBOINIK, Svitlana VASYUK, Serhii KOVALENKO

BİYOAKTİF MOLEKÜL METİL 4-BROMO-2-FLOROBENZOAT'IN İN SİLİKO İLAÇ DEĞERLENDİRMESİ VE ARAŞTIRMASI

Maria JULİE, T. PRABHU, Fazılath Basha ASİF, S. MUTHU

RV1463 OLASI KORUNMUŞ ATP BAĞLAYICI PROTEİNİN HESAPLAMALI YAKLAŞIMLA MOLEKÜLER TEMEL BÜTÜNLEŞTİRİCİ ANALİZİ

Md Amjad BEG, Mustafa SEVİNDİK, Shahid HAİDER, Preeti SONİ, Priya BHATİA, Shahzul HASAN, Richa YADAV, Fareeda ATHAR

İLAÇ KEŞFİ VE GELİŞTİRİLMESİNDE YAPAY ZEKÂ

İrem Nur ÇELİK, Firdevs Kübra ARSLAN, Ramazan TUNÇ, İlkay YILDIZ

BAZI MICHAEL TİPİ KATIM ÜRÜNLERİNİN SENTEZ ÇALIŞMASI VE ANTİMİKROBİYAL AKTİVİTELERİ

Gül BAYRAM, Abdoul NZEYIMANA, Semra UTKU, Mahmut ÜLGER, Gönül ASLAN, Erdoğan BERÇIN