KATI LİPİT NANOPARTİKÜLLER VE BEYNE ÖZGÜ İLAÇ TAŞIYICI SİSTEM OLARAK UYGULAMALARI

Amaç: Son 20 yılda nanoteknolojik gelişmeler ile birlikte ilaç moleküllerinin beyne hedeflenmesine yönelik çalışmalarda artış gözlenmektedir. Beyin, kan dolaşımından kendine özgü bir bariyer ile ayrılmıştır. Kan-beyin bariyeri olarak adlandırılan bu yapı astrosit, perisit, endotel hücreleri ve bunlar arasında bulunan sıkı bağlantılardan oluşmaktadır. Moleküllerin beyne geçişini engelleyen enzimatik aktivitenin yanında, beynin sistemik dolaşımdan kan-beyin bariyeri ile ayrılması, terapötik moleküllerinin beyne geçişini olumsuz etkilemektedir. Bu yüzden merkezi sinir sistemi rahatsızlıklarında tedavi zorlaşmakta, terapötik etki azalmakta veya gözlenememektedir. Bu durumu anlamak ve olası sorunları giderebilmek için beynin ve kan-beyin bariyerinin yapısı bilinmeli, ilaç moleküllerinin geçiş mekanizmaları aydınlatılmalıdır. Beyne hedeflemede ilaç taşıyıcı sistemlerin önemi günden güne artmaktadır. Üretilen sistemler arasında katı lipit nanopartiküllerin kolay üretimi, biyo-uyumluluğu, biyo-bozunabilirliği açısından diğer sistemlere göre avantajları bulunmaktadır. Bu derlemede, kan beyin bariyerinden bahsedilmesi, beyne ilaç hedefleme yöntemlerinin açıklanması ve beyne ilaç moleküllerinin hedeflenmesinde katı lipit nanopartiküllerle yapılan çalışmalardan söz edilmesi amaçlanmıştır.

SOLID LIPID NANOPARTICLES AND APPLICATIONS AS BRAIN SPECIFIC DRUG DELIVERY SYSTEMS

Objective: In the last 20 years, with the nanotechnological developments, there has been an increase in studies aimed at targeting drug molecules to the brain. The brain is separated from bloodstream by a unique barrier. This structure, called the blood-brain barrier, which consists of astrocytes, pericytes, endothelial cells and tight junctions between them. Apart from the enzymatic activity that prevents the passage of molecules to the brain, the separation of the brain from the systemic blood circulation by the blood-brain barrier negatively affects the passage of therapeutic molecules. The structure of the brain and the blood-brain barrier must be known and the penetration mechanisms of drug molecules to the brain must be elucidated. In this review, we aimed to mention the blood-brain barrier and drug targeting methods to the brain. Also, importance of the solid lipid nanoparticles in targeting drug molecules to the brain will be emphasized.

___

  • 1. Agrawal, M., Saraf, S., Saraf, S., Dubey, S. K., Puri, A., Patel, R. J., Alexander, A. (2020). Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. Journal of Controlled Release, 321, 372-415.
  • 2. Nature Biopharma Dealmakers Web site. (2020). Retrieved December 30, 2020, from https://www.nature.com/articles/d43747-020-01119-8.
  • 3. Khan, A. R., Yang, X., Fu, M., Zhai, G. (2018). Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 291, 37-64.
  • 4. Mehnert, W., Mäder, K. (2012). Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews, 64, 83-101.
  • 5. Barnabas, W. (2019). Drug targeting strategies into the brain for treating neurological diseases. Journal of Neuroscience Methods, 311, 133-146.
  • 6. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., Rossi, C. (2007). Solid lipid nanoparticles for targeted brain drug delivery. Advanced Drug Delivery Reviews, 59(6), 454-477.
  • 7. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3-25.
  • 8. Lo, E. H., Singhal, A. B., Torchilin, V. P., Abbott, N. J. (2001). Drug delivery to damaged brain. Brain Research Reviews. 38, 140-148.
  • 9. Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Pilkington, G. J. (2018). Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity. FASEB Journal, 32(1), 168-182.
  • 10. Ghersi-Egea, J. F., Leninger-Muller, B., Suleman, G., Siest, G., Minn, A. (1994). Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. Journal of Neurochemistry, 62(3), 1089-1096.
  • 11. Pardridge, W. M. (2002). Drug and gene delivery to the brain: the vascular route. Neuron, 36(4), 555-558.
  • 12. Doğan, S., Çaban, S., Çapan, Y. (2013). Beyine İlaç Hedeflendirme Stratejileri. Hacettepe University Journal of the Faculty of Pharmacy, 2, 231-250.
  • 13. KrolI, R. A., Neuwelt, E. A. (1998). Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Journal of Neurosurgery, 42(5), 1083-1099.
  • 14. Choi, J. J., Feshitan, J. A., Baseri, B., Wang, S., Tung, Y. S., Borden, M. A., Konofagou, E. E. (2009). Microbubble-size dependence of focused ultrasound-induced blood–brain barrier opening in mice in vivo. Transactions on Biomedical Engineering, 57(1), 145-154.
  • 15. Bodor, N., Buchwald, P. (2003). Brain-targeted drug delivery. American Journal of Drug Delivery, 1(1), 13-26.
  • 16. Harbaugh, R. E., Saunders, R. L., Reeder, R. F. (1988). Use of implantable pumps for central nervous system drug infusions to treat neurological disease. Journal of Neurosurgery, 23(6), 693-698.
  • 17. Chan, K. Y., Jang, M. J., Yoo, B. B., Greenbaum, A., Ravi, N., Wu, W. L., Gradinaru, V. (2017). Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nature Neuroscience, 20(8), 1172-1179.
  • 18. Li, Y., Zhou, Y., Jiang, J., Wang, X., Fu, Y., Gong, T., Zhang, Z. (2015). Mechanism of brain targeting by dexibuprofen prodrugs modified with ethanolamine-related structures. Journal of Cerebral Blood Flow and Metabolism, 35(12), 1985-1994.
  • 19. Stalmans, S., Bracke, N., Wynendaele, E., Gevaert, B., Peremans, K., Burvenich, C., De Spiegeleer, B. (2015). Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo. PLOS One, 10(10), e0139652.
  • 20. Pardeshi, C. V., Belgamwar, V. S. (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opinion on Drug Delivery, 10(7), 957-972.
  • 21. Gänger, S., Schindowski, K. (2018). Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Journal of Pharmaceutics, 10(3), 116.
  • 22. Lewis, D. F., Dickins, M. (2002). Substrate SARs in human P450s. Drug Discovery Today, 7(17), 918-925.
  • 23. Gao, H. (2016). Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharmaceutica Sinica B, 6(4), 268-286.
  • 24. Olivi, A., Ewend, M. G., Utsuki, T., Tyler, B., Domb, A. J., Brat, D. J., Brem, H. (1996). Interstial delivery of varboplatin via biodegradable polymers is effextive against experimental glioma in the rat. Cancer Chemotheraphy and Pharmacology, 39, 90-96.
  • 25. Westphal, M., Hilt, D. C., Bortey, E., Delavault, P., Olivares, R., Warnke, P. C., Ram, Z. (2003). A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncology, 5(2), 79-88.
  • 26. Gynther, M., Jalkanen, A., Lehtonen, M., Forsberg, M., Laine, K., Ropponen, J., Rautio, J. (2010). Brain uptake of ketoprofen–lysine prodrug in rats. International Journal of Pharmaceutics, 399(1-2), 121-128.
  • 27. Sheha, M. (2012). Pharmacokinetic and ulcerogenic studies of naproxen prodrugs designed for specific brain delivery. Archives of Pharmacal Research, 35(3), 523-530.
  • 28. Meinig, J. M., Ferrara, S. J., Banerji, T., Banerji, T., Sanford-Crane, H. S., Bourdette, D., Scanlan, T. S. (2017). Targeting fatty-acid amide hydrolase with prodrugs for CNS-selective therapy. ACS Chemical Neuroscience, 8(11), 2468-2476.
  • 29. Mittal, G., Carswell, H., Brett, R., Currie, S., Kumar, M. R. (2011). Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology. Journal of Controlled Release, 150(2), 220-228.
  • 30. Tian, X. H., Lin, X. N., Wei, F., Feng, W., Huang, Z. C., Wang, P., Diao, Y. (2011). Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. International Journal of Nanomedicine, 6, 445.
  • 31. Priprem, A., Watanatorn, J., Sutthiparinyanont, S., Phachonpai, W., Muchimapura, S. (2008). Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine: Nanotechnology, Biology and Medicine, 4(1), 70-78.
  • 32. Singh, I., Swami, R., Pooja, D., Jeengar, M. K., Khan, W., Sistla, R. (2016). Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. Journal of Drug Targeting, 24(3), 212-223.
  • 33. Kumar, M., Misra, A., Babbar, A. K., Mishra, A. K., Mishra, P., Pathak, K. (2008). Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. International Journal of Pharmaceutics, 358(1-2), 285-291.
  • 34. Ved, P. M., Kim, K. (2011). Poly (ethylene oxide/propylene oxide) copolymer thermoreversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. International Journal of Pharmaceutics, 411(1-2), 1-9.
  • 35. Kaur, I. P., Bhandari, R., Bhandari, S., Kakkar, V. (2008). Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled Release, 127(2), 97-109.
  • 36. Gastaldi, L., Battaglia, L., Peira, E., Chirio, D., Muntoni, E., Solazzi, I., Dosio, F. (2014). Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 87(3), 433-444.
  • 37. Pooja, D., Tunki, L., Kulhari, H., Reddy, B. B., Sistla, R. (2016). Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data in Brief, 6, 15-19.
  • 38. Gallarate, M., Trotta, M., Battaglia, L., Chirio, D. (2009). Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation. Journal of Microencapsulation, 26(5), 394-402.
  • 39. Kaushik, M., Mohan, G., Shukla, T. P., Upadhyay, N., Mathur, A., Cherian, B. (2012). Formulation development and evaluation of solid lipid nanoparticles of aceclofenac using solvent injection method. Journal of Drug Delivery and Therapeutics, 2(4), 97-100.
  • 40. Silva, A. C., Gonzalez-Mira, E., Garcia, M. L., Egea, M. A., Fonseca, J., Silva, R., Ferreira, D. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids and Surfaces B Biointerfaces, 86(1), 158-165.
  • 41. Karami, M. A., Zadeh, B. S. M., Koochak, M., Moghimipur, E. (2016). Superoxide dismutaseloaded solid lipid nanoparticles prepared by cold homogenization method: characterization and permeation study through burned rat skin. Jundishapur Journal of Natural Pharmaceutical Products, 11, e33968.
  • 42. Cavalli, R., Gasco, M. R., Chetoni, P., Burgalassi, S., Saettone, M. F. (2002). Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. International Journal of Pharmaceutics, 238(1-2), 241-245.
  • 43. Liu, D., Jiang, S., Shen, H., Qin, S., Liu, J., Zhang, Q., Xu, Q. (2011). Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. Journal of Nanoparticle Research, 13(6), 2375-2386.
  • 44. Sarmento, B., Martins, S., Ferreira, D., Souto, E. B. (2007). Oral insulin delivery by means of solid lipid nanoparticles. International Journal of Nanomedicine, 2(4), 743.
  • 45. Stancampiano, A. H. S., Acquaviva, R., Campisi, A., Vanella, L., Ventura, C. A., Puglisi, G., Pignatello, R. (2006). Technological and biological characterization of idebenone-loaded solid lipid nanoparticles prepared by a modified solvent injection technique. Journal of Biomedical Nanotechnology, 2(3-4), 253-270.
  • 46. Al Haj, N. A., Abdullah, R., Ibrahim, S., Bustamam, A. (2008). Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques. American Journal of Pharmacology and Toxicology, 3(3), 219-24.
  • 47. Mei, Z., Chen, H., Weng, T., Yang, Y., Yang, X. (2003). Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. European Journal of Pharmaceutics and Biopharmaceutics, 56(2), 189-196.
  • 48. Ugazio, E., Cavalli, R., Gasco, M. R. (2002). Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). International Journal of Pharmaceutics, 241(2), 341-344.
  • 49. Jose, S., Anju, S. S., Cinu, T. A., Aleykutty, N. A., Thomas, S., Souto, E. B. (2014). In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. International Journal of Pharmaceutics, 474(1-2), 6-13.
  • 50. Graverini, G., Piazzini, V., Landucci, E., Pantano, D., Nardiello, P., Casamenti, F., Bergonzi, M. C. (2018). Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids and Surfaces B Biointerfaces, 161, 302-313.
  • 51. Erel-Akbaba, G., Carvalho, L. A., Tian, T., Zinter, M., Akbaba, H., Obeid, P. J., Tannous, B. A. (2019). Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. American Chemical SocietyNano, 13(4), 4028-4040.
  • 52. Abou Youssef, N. A. H., Kassem, A. A., Farid, R. M., Ismail, F. A., Magda Abd Elsamea, E. M., Boraie, N. A. (2018). A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: preparation, characterization and in vivo evaluation. International Journal of Pharmaceutics, 548(1), 609-624.
  • 53. Singh, I., Swami, R., Pooja, D., Jeengar, M. K., Khan, W., Sistla, R. (2016). Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. Journal of Drug Targeting, 24(3), 212-223.
  • 54. Dal Magro, R., Ornaghi, F., Cambianica, I., Beretta, S., Re, F., Musicanti, C., Sancini, G. (2017). ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. Journal of Controlled Release, 249, 103-110.
  • 55. Fatouh, A. M., Elshafeey, A. H., Abdelbary, A. (2017). Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Design, Development and Therapy, 11, 1815-1825.
  • 56. Hady, M. A., Sayed, O. M., Akl, M. A. (2020). Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; Optimization and in-vivo evaluation. Colloids Surfaces B: Biointerfaces,193(2020):111076, 1-12.
  • 57. Mohd, Y., Iti, C., Ameeduzzafar, Z., Madhu V., Noorulla, K. M., Abdurazak, J. T., Nabil, K. A., Misbahu, J. H., Dinesh P., Wondesen, G. G., Debesa, D. D., Sara, U. V. S., Nitin, K. (2020). Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation. Journal of Drug Delivery Science and Technology, 61(2021), 1- 13.
  • 58. Jian-Xin, W., Xun, S., Zhi-Rong, Z. (2002). Enhanced brain targeting by synthesis of 3′,5′- dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 54(3), 285-290.
  • 59. Daina, N. B., Tatiana, N. P., Irina, V. Z., Evgenia, A. B., Zukhra, M. S., Ildar Kh. R., Vasily, M. B., Konstantin, A. P., Eliana, B. S. (2020). Surface modification of pralidoxime chlorideloaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat. Toxicology, 444, 152578.
  • 60. Shi C. Y., Li F. L., Ying C., Jia, B. Z., Bing, W. L., Chang Z. Y. (1999). Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. Journal of Controlled Release, 59(3), 299-307.
  • 61. Priscilla, K. M., Nana O. A., Paulina, A., Nana, K. K. B., Newman, O. (2021). Solid-lipid nanoparticle formulation improves antiseizure action of cryptolepine. Biomedicine & Pharmacotherapy, 137, 111354,
  • 62. Jitender, M., Ravi, S. P., Vikas, J., Om, P. K., Ramesh, C., Anju, K. (2013). Poly (ethylene)- glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine: Nanotechnology, Biology and Medicine, 9(4), 492-503.
  • 63. Anjita, S., Roshni, U., Pallavi, P., Suman, R. (2015). Preparation and Characterization of Rizatriptan Benzoate Loaded Solid Lipid Nanoparticles for Brain Targeting. Materials Today: Proceedings, 2(9), 4521-4543.
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

BAZI 4,5-DİHİDRO-1H-PİRAZOL VE ŞALKON TÜREVLERİNİN ANTİMİKROBİYAL VE ANTİTÜBERKÜLER ETKİLERİ ÜZERİNE ARAŞTIRMALAR

Begüm EVRANOS AKSÖZ, Fatma Kaynak KAYNAK ONURDAĞ, Erkan AKSÖZ, Selda ÖZGEN

COVID-19 TEDAVİSİNDE İLAÇ-İLAÇ ETKİLEŞİMLERİNİN FARMAKOKİNETİK AÇIDAN DEĞERLENDİRİLMESİ

Nuran COŞKUN, Ozge ULKER

BAZI MICHAEL TİPİ KATIM ÜRÜNLERİNİN SENTEZ ÇALIŞMASI VE ANTİMİKROBİYAL AKTİVİTELERİ

Gül BAYRAM, Abdoul NZEYIMANA, Semra UTKU, Mahmut ÜLGER, Gönül ASLAN, Erdoğan BERÇIN

HASTANELERDE SIKLIKLA KULLANILAN BAZI DEZENFEKTAN VE ANTİSEPTİKLERİN ANTİMİKROBİYAL AKTİVİTELERİNİN ARAŞTIRILMASI

Süleyman KAYAN, Nurten ALTANLAR

HPTLC İLE CALOTROPIS GIGANTEA VE CALOTROPIS PROCERA YAPRAĞINDAKİ β-SİTOSTEROLÜN TANIMLANMASI VE MİKTAR TAYİNİ

Shripad BAİRAGİ, Prashant GHULE, Ritu GİLHOTRA

MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER

Ceren ÖZTÜRK, Funda ATİLA

BETA-SİTOSTEROL VE ANTİNOSİSEPTİF ETKİ MEKANİZMASI

Ayşe Arzu ŞAKUL, Mehmet Evren OKUR

KULLANILMIŞ KOZMETİK ÜRÜNLERDEN İZOLE EDİLEN AEROP BAKTERİLER VE ANTİBİYOTİK DİRENCİNİN DEĞERLENDİRİLMESİ

Ömer AKGÜL, Kadir BAKAN

BİYOAKTİF MOLEKÜL METİL 4-BROMO-2-FLOROBENZOAT'IN İN SİLİKO İLAÇ DEĞERLENDİRMESİ VE ARAŞTIRMASI

Sambanthan MUTHU, Fazilath Basha ASIF, Malayappan Maria JULIE, Thirutanasambantam PRABU

CuO VE GRAFİT TOZUNA DAYALI ELEKTROKİMYASAL NANOSENSÖR İMALATI VE GERÇEK NUMUNELERDE OP (ORGANOFOSFOR) PESTİSİTLERİNİN ESER MADDE ANALİZİ İÇİN UYGULAMASI

Ratnesh DAS, Aayushı CHANDERIYA