TRİİYODOANİLİN’İN SENTEZLENMESİ, NANOSÜSPANSİYONLARININ HAZIRLANMASI, İN VİTRO KARAKTERİZASYONU VE RADYOKONTRAST ÖZELLİKLERİNİN İNCELENMESİ

Amaç: Suda çözünürlüğü bulunmayan iyot bazlı triiyodoanilin (TIA) radyokontrast bileşiğinin sentezini ve nanosüspansiyonunu yapmak, karakterizasyonlarını gerçekleştirmek ve Bilgisayarlı Tomografi (BT) görüntülemede sıklıkla kullanılan iopromid ve ioheksol ile kıyaslamak.

SYNTHESIS OF TRIIODOANILINE, PREPARATION OF NANOSUSPENSIONS, IN VITRO CHARACTERIZATION AND INVESTIGATION OF RADIOCONTRAST PROPERTIES

Objective: Synthesis and nanosuspension preparation of iodine-based triiodoaniline (TIA) radiocontrast compound, which is not soluble in water, perform their characterization and compare with iopromide and iohexol, which are frequently used in Computed Tomography (CT) imaging.

___

  • 1. Caschera, L., Lazzara, A., Piergallini, L., Ricci, D., Tuscano, B., Vanzulli, A. (2016). Contrast agents in diagnostic imaging: Present and future. Pharmacological Research, 110, 65-75. https://doi.org/10.1016/j.phrs.2016.04.023
  • 2. Koc, M.M., Aslan, N., Kao, A.P., Barber, A.H. (2019). Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microscopy Research and Technique, 82(6), 812-848. https://doi.org/10.1002/jemt.23225
  • 3. Almen, T. (1985). Development of nonionic contrast-media. Investigative Radiology, 20(1), 2- 9. https://doi.org/10.1097/00004424-198501002-00003.
  • 4. Müller, R.H., Gohla, S., Keck, C.M. (2011). State of the art of nanocrystals – Special features, production,nanotoxicology aspects and intracellular delivery. European Journal of Pharmaceutics and Biopharmaceutics, 78, 1-9. https://doi.org/10.1016/j.ejpb.2011.01.007
  • 5. Wang, Y., Zheng, Y., Zhang, L., Wang, Q., Zhang, D. (2013). Stability of nanosuspensions in drug delivery. Journal of Controlled Release, 172, 1126-1141. https://doi.org/10.1016/j.jconrel.2013.08.006
  • 6. Gao, L., Liu, G., Ma, J., Wang, X., Zhou, L., Li, X. (2012). Drug nanocrystals: In vivo performances. Journal of Controlled Release, 160, 418-430. https://doi.org/10.1016/j.jconrel.2012.03.013
  • 7. Wang, L.L., Du, J., Zhou, Y.Q., Wang, Y.C. (2017). Safety of nanosuspensions in drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(2), 455-469. https://doi.org/10.1016/j.nano.2016.08.007
  • 8. Kamaly, N., He, J.C., Ausiello, D.A., Farokhzad, O.C. (2016). Nanomedicines for renal disease: current status and future applications. Nature Reviews Nephrology, 12(12), 738-753. https://doi.org/10.1038/nrneph.2016.156
  • 9. Khan, I., Saeed, K., Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • 10. Williams, R.M., Jaimes, E.A., Heller, D.A. (2016). Nanomedicines for kidney diseases. Kidney International, 90(4), 740-745. https://doi.org/10.1016/j.kint.2016.03.041
  • 11. Thurman, J.M., Serkova, N.J. (2013). Nanosized contrast agents to noninvasively detect kidney inflammation by magnetic resonance imaging. Advances in Chronic Kidney Disease, 20(6), 488-499. https://doi.org/10.1053/j.ackd.2013.06.001
  • 12. Debbage, P., Jaschke, W. (2008). Molecular imaging with nanoparticles: Giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845-875. https://doi.org/10.1007/s00418-008- 0511-y
  • 13. Chemical Book Web site. (2017). Retrieved September 28, from https://www.chemicalbook.com/ChemicalProductProperty_EN_cb5125267.htm.
  • 14. Chemical Book Web site. (2017). Retrieved September 29, from https://www.chemicalbook.com/ChemicalProductProperty_EN_cb5110557.htm.
  • 15. ChemSpider Web site. (2020). Retrieved September 29, from http://www.chemspider.com/Chemical-Structure.193223.html.
  • 16. Sahu, B.P., Das, M.K. (2014). Nanosuspension for enhancement of oral bioavailability of felodipine. Applied Nanoscience, 4(2), 189-197. https://doi.org/10.1007/s13204-012-0188-3
  • 17. Ferreira, I.M., Casagrande, G.A., Pizzuti, L., Raminelli, C. (2014). Ultrasound-promoted rapid and efficient iodination of aromatic and heteroaromatic compounds in the presence of iodine and hydrogen peroxide in water. Synthetic Communications, 44(14), 2094-2102. https://doi.org/10.1080/00397911.2013.879900
  • 18. Rao, J.P., Geckeler, K.E. (2011). Polymer nanoparticles: Preparation techniques and sizecontrol parameters. Progress in Polymer Science, 36(7), 887-913. https://doi.org/10.1016/j.progpolymsci.2011.01.001
  • 19. Pirimoglu, B., Sade, R., Sakat, M.S., Ogul, H., Levent, A., Kantarci, M. (2018). Low-dose noncontrast examination of the paranasal sinuses using volumetric computed tomography. Journal of Computer Assisted Tomography, 42(3), 482-486. https://doi.org/10.1097/RCT.0000000000000699
  • 20. Pirimoglu, B., Sade, R., Sakat, M.S., Polat, G., Kantarci, M. (2019). Low-dose non-contrast examination of the temporal bone using volumetric 320-row computed tomography. Acta Radiologica, 60(7), 908-916. https://doi.org/10.1177/0284185118802597
  • 21. Ravichandran, R. (2009). Nanoparticles in drug delivery: Potential green nanobiomedicine applications. International Journal of Green Nanotechnology: Biomedicine, 1(2), 108-130. https://doi.org/10.1080/19430850903430427
  • 22. De Simone, B., Ansaloni, L., Sartelli, M., Gaiani, F., Leandro, G., De' Angelis, G.L., Di Mario, F., Coccolini, F., Catena, F. (2018). Is the risk of contrast-induced nephropathy a real contraindication to perform intravenous contrast enhanced Computed Tomography for nontraumatic acute abdomen in Emergency Surgery Department?. Acta Biomedica, 89(9-S), 158- https://doi.org/172. 10.23750/abm.v89i9-S.7891.
  • 23. Mohammed, N.M.A., Mahfouz, A., Achkar, K., Rafie, I.M., Hajar, R. (2013). Contrast-induced nephropathy. Heart View s : The Official Journal of the Gulf Heart Association, 14(3), 106-116. https://doi.org/10.4103/1995-705X.125926
  • 24. Cosmai, L., Porta, C., Privitera, C., Gesualdo, L., Procopio, G., Gori, S., et al. (2020). Acute kidney injury from contrast-enhanced CT procedures in patients with cancer: White paper to highlight its clinical relevance and discuss applicable preventive strategies. ESMO Open, 5(2), 1-8. https://doi.org/10.1136/esmoopen-2019-000618.
  • 25. Sovak, M., Ranganathan, R. (1980). Stability of nonionic water-soluble contrast media: implications for their design. Investigative Radiology, 15(6), S323-328. https://doi.org/10.1097/00004424-198011001-00068
  • 26. The LibreTexts Web site. (2006). Retrieved January 05, 2021, from https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_- _The_Central_Science_(Brown_et_al.)/13%3A_Properties_of_Solutions
  • 27. Cormode, D.P., Naha, P.C., Fayad, Z.A. (2014). Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media & Molecular Imaging, 9(1), 37-52. https://doi.org/10.1002/cmmi.1551
  • 28. Ashton, J.R., West, J.L., Badea, C.T. (2015). In vivo small animal micro-CT using nanoparticle contrast agents. Frontiers in Pharmacology, 6, 1-22. https://doi.org/10.3389/fphar.2015.00256
  • 29. Williams, R.M., Shah, J., Tian, H.S., Chen, X., Geissmann, F., Jaimes, E.A., Heller, D.A. (2018). Selective nanoparticle targeting of the renal tubules. Hypertension, 71(1), 87-94. https://doi.org/10.1161/HYPERTENSIONAHA.117.09843
  • 30. Han, X.J., Xu, K., Taratula, O., Farsad, K. (2019). Applications of nanoparticles in biomedical imaging. Nanoscale, 11(3), 799-819. https://doi.org/10.3390/nano10091700
  • 31. Hainfeld, J.F., Ridwan, S.M., Stanishevskiy, Y., Smilowitz, N.R., Davis, J., Smilowitz, H.M. (2018). Small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Scientific Reports, 8, 1-10. https://doi.org/10.1038/s41598-018-31940-2
  • 32. Kim, J., Lee, N., Hyeon, T. (2017). Recent development of nanoparticles for molecular imaging. Philosophical Transactions of the Royal Society A, 375(2107), 1-17. https://doi.org/10.1098/rsta.2017.0022
  • 33. Patel, V.R., Agrawal, Y. (2011). Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2(2), 81-87. https://doi.org/10.4103/2231-4040.82950
  • 34. Sutradhar, K.B., Khatun, S., Luna, I.P. (2013). Increasing possibilities of nanosuspension. Journal of Nanotechnology, 2013, 346581. https://doi.org/10.1155/2013/346581
  • 35. Rabinow, B., Kipp, J., Papadopoulos, P., Wong, J., Glosson, J., Gass, J., Sun, C.S., Wielgos, T., White, R., Cook, C., Barker, K., Wood, K. (2007). Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. International Journal of Pharmaceutics, 339(1-2), 251-260. https://doi.org/10.1016/j.ijpharm.2007.02.030
  • 36. Merisko-Liversidge, E., Liversidge, G.G., Cooper, E.R. (2003). Nanosizing: A formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences, 18(2), 113-120. https://doi.org/10.1016/S0928-0987(02)00251-8
  • 37. Peters, K., Leitzke, S., Diederichs, J.E., Borner, K., Hahn, H., Müller, R.H., Ehlers, S. (2000). Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. Journal of Antimicrobial Chemotherapy, 45(1), 77-83. https://doi.org/10.1093/jac/45.1.77
  • 38. Kalvakuntla, S., Deshpande, M., Attari, Z., Kunnatur, K. (2016). Preparation and characterization of nanosuspension of aprepitant by H96 process. Advanced Pharmaceutical Bulletin, 6(1), 83-90. https://doi.org/10.15171/apb.2016.013
  • 39. Singare, D.S., Marella, S., Gowthamrajan, K., Kulkarni, G.T., Vooturi, R., Rao, P.S. (2010). Optimization of formulation and process variable of nanosuspension: An industrial perspective. International Journal of Pharmaceutics, 402(1-2), 213-220. https://doi.org/10.1016/j.ijpharm.2010.09.041
  • 40. Singh, S., Singh, S.K., Chauhan, M.G., Kumar, B., Pandey, N.K., Kaur, B., Kumar, A., Mohanta, S., Gulati, M., Wadhwa, S., Yadav, A.K., Singh, P.K., Kumari, Y., Kaur, G., Khursheed, R., Clarisse, A. (2019). Quality by design-based optimization of formulation and process variables for controlling particle size and zeta potential of spray dried incinerated copper nanosuspension. Recent Innovations in Chemical Engineering, 12(3), 248-260. https://doi.org/10.2174/2405520412666190627144845
  • 41. Karakucuk, A., Celebi, N. (2020). Investigation of formulation and process parameters of wet media milling to develop etodolac nanosuspensions. Pharmaceutical Research, 37(6), 111. https://doi.org/10.1007/s11095-020-02815-x
  • 42. Ali, H.S., York, P., Blagden, N. (2009). Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. International Journal of Pharmaceutics, 375(1-2), 107-113. https://doi.org/10.1016/j.ijpharm.2009.03.029
  • 43. Patravale, V.B., Date, A.A., Kulkarni, R.M. (2004). Nanosuspensions: A promising drug delivery strategy. Journal of Pharmacy and Pharmacology, 56, 827-840. https://doi.org/10.1211/0022357023691
  • 44. Moorthi, C., Krishnan, K., Manavalan, R., Kathiresan, K. (2012). Preparation and characterization of curcumin–piperine dual drug loaded nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 2(11), 841-848. https://doi.org/10.1016/S2221-1691(12)60241-X
  • 45. Afifi, S.A., Hassan, M.A., Abdelhameed, A.S., Elkhodairy, K.A. (2015). Nanosuspension: An emerging trend for bioavailability enhancement of etodolac. International Journal of Polymer Science, 2015, 938594. http://dx.doi.org/10.1155/2015/938594
  • 46. Wiśniewska, M., Ostolska, I., Szewczuk-Karpisz, K., Chibowski, S., Terpiłowski, K., Gun’ko, V.M., Zarko, V.I. (2015). Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3–SiO2–TiO2). Journal of Nanoparticle Research, 17(12), 1-14. http://dx.doi.org/10.1007/s11051-014-2831-2
  • 47. Abdelbary, A.A., Li, X., El-Nabarawi, M., Elassasy, A., Jasti, B. (2013). Effect of fixed aqueous layer thickness of polymeric stabilizers on zeta potential and stability of aripiprazole nanosuspensions. Pharmaceutical Development and Technology, 18(3), 730-735. http://dx.doi.org/10.3109/10837450.2012.727001.
  • 48. Müller, R., Jacobs, C. (2002). Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. International Journal of Pharmaceutics, 237(1-2), 151- 161. http://dx.doi.org/10.1016/s0378-5173(02)00040-6.
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

BAZI NAFTOKİNON TÜREVLERİ İLE İLAÇ MADDELERİ ARASINDAKİ ETKİLEŞİM ÜRÜNLERİNİN YAPISININ İNCELENMESİ

Anastasiia DONCHENKO, Kateryna MİEDVİEDİEVA, Oleksii VOSKOBOINIK, Svitlana VASYUK, Serhii KOVALENKO

RV1463 OLASI KORUNMUŞ ATP BAĞLAYICI PROTEİNİN HESAPLAMALI YAKLAŞIMLA MOLEKÜLER TEMEL BÜTÜNLEŞTİRİCİ ANALİZİ

Md Amjad BEG, Mustafa SEVİNDİK, Shahid HAİDER, Preeti SONİ, Priya BHATİA, Shahzul HASAN, Richa YADAV, Fareeda ATHAR

HPTLC İLE CALOTROPIS GIGANTEA VE CALOTROPIS PROCERA YAPRAĞINDAKİ β-SİTOSTEROLÜN TANIMLANMASI VE MİKTAR TAYİNİ

Shripad BAİRAGİ, Prashant GHULE, Ritu GİLHOTRA

PULMONER ARTERİYEL HİPERTANSİYON TEDAVİSİNDE GÜNCEL YAKLAŞIMLAR

Cenk YILDIZ, Burcu DEVRİM

COVID-19 TEDAVİSİNDE İLAÇ-İLAÇ ETKİLEŞİMLERİNİN FARMAKOKİNETİK AÇIDAN DEĞERLENDİRİLMESİ

Nuran COŞKUN, Ozge ULKER

BİYOAKTİF MOLEKÜL METİL 4-BROMO-2-FLOROBENZOAT'IN İN SİLİKO İLAÇ DEĞERLENDİRMESİ VE ARAŞTIRMASI

Maria JULİE, T. PRABHU, Fazılath Basha ASİF, S. MUTHU

CUPANIOSCORDUM SEKSİYONUNA AİT ÜÇ ALLIUM L. (AMARYLLIDACEAE) TÜRÜNÜN YAPRAK VE SKAPUS ANATOMİSİ

Gülnur EKŞİ, Gülderen YILMAZ, Mehmet BONA, Ayşe Mine GENÇLER ÖZKAN

KULLANILMIŞ KOZMETİK ÜRÜNLERDEN İZOLE EDİLEN AEROP BAKTERİLER VE ANTİBİYOTİK DİRENCİNİN DEĞERLENDİRİLMESİ

Ömer AKGÜL, Kadir BAKAN

BAZI MICHAEL TİPİ KATIM ÜRÜNLERİNİN SENTEZ ÇALIŞMASI VE ANTİMİKROBİYAL AKTİVİTELERİ

Gül BAYRAM, Abdoul NZEYIMANA, Semra UTKU, Mahmut ÜLGER, Gönül ASLAN, Erdoğan BERÇIN

COVİD-19 PANDEMİSİNİN TOPLUM ECZACILIĞI HİZMETLERİNE ETKİLERİ

Muammer ÇALIKUŞU, Gülsen GÜNEŞ, Gülbin ÖZÇELİKAY