KURUTMA YÖNTEMİNE GÖRE NANE BİTKİSİNİN FENOLİK İÇERİĞİNİN VE ANTİOKSİDAN AKTİVİTESİNİN KARŞILAŞTIRILMASI

Amaç: Bitkilerin antioksidan aktiviteleri kurutma yöntemlerinden önemli ölçüde etkilenir. Bu çalışmada, hava ile kurutulmuş (HK) ve dondurularak kurutulmuş (DK) nanenin (Mentha piperita L.) sulu ekstrelerinde toplam fenolik içeriği ve antioksidan aktivitesi ölçülmüştür. Amaç, kurutma yöntemine göre antioksidan aktivitesinde değişiklik olup olmadığını belirlemektir.

COMPARISON OF THE PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITY IN PEPPERMINT PLANT ACCORDING TO THE DRYING METHOD

Objective: Antioxidant activities of the plants were significantly affected by their drying methods. In the current study, total phenolic contents and antioxidant activity of aqueous extracts of peppermint (Mentha piperita L.) dried by two different methods, air-dried (AD) and freeze-dried (FD) were measured. The aim was to determine if there were any changes in the antioxidant activity according to the drying method.

___

  • 1. Dorman, H.J., Koşar, M., Başer, K.H., Hiltunen R. (2009). Phenolic profile and antioxidant evaluation of Mentha x piperita L. (Peppermint) extracts. Natural Product Communications, 4(4), 535-542. DOI:https://doi.org/10.1177/1934578X0900400419.
  • 2. Arumugam, P., Gayatri Priya, N., Subathra, M., Ramesh, A. (2008). Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats. Environmental Toxicology and Pharmacology, 26,92–95. DOI:https://doi.org/10.1016/j.etap.2008.02.008
  • 3. Abbaszadeh, B., Valadabadi, S.A., Farahani, H.A., Darvishi, H.H. (2009). Studying of essential oil variations in leaves of Mentha species. African Journal of Plant Science, 3(10), 217–221. DOI: https://doi.org/10.5897/AJPS.9000242
  • 4. Kunnumakkara, A.B., Chung, J.G., Koca, C., Dey, S. (2009). Molecular Targets and Therapeutic Uses of Spices, Modern Uses for Ancient Medicine. In B.B Aggarwal and A.B. Kunnumakkara (Eds.), Mint and Its Constituents (p. 373-401). T Singapore; Hackensack, NJ. World Scientific. ISBN 9789812837905
  • 5. McKay, D.L., Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20(8), 619-633. DOI: https://doi.org/10.1002/ptr.1936
  • 6. Silva, B.A., Ferreres, F., Malva, J.O., Dias, A.C.P. (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, 90, 157-167. DOI:https://doi.org/10.1016/j.foodchem.2004.03.049
  • 7. Pryor, W.A. (1991). The antioxidant nutrients and disease prevention--what do we know and what do we need to find out? The American Journal of Clinical Nutrition, 53, 391-393. DOI:https://doi.org/10.1093/ajcn/53.1.391S
  • 8. Pietta, P.G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035-1042. DOI:https://doi.org/10.1021/np9904509
  • 9. Areias, F.M., Valentao, P., Andrade, P.B., Ferreres, F., Seabra, R.M. (2001). Phenolic fingerprint of peppermint leaves. Food Chemistry, 73, 307-311. DOI: https://doi.org/10.1016/S0308-8146(00)00302-2
  • 10. Zheng, W., Wang, S.Y. (2001). Antioxidant Activity and Phenolic Compounds in Selected Herbs. Journal of Agricultural and Food Chemistry, 49 (11), 5165-5170. DOI:https://doi.org/10.1021/jf010697n
  • 11. Capecka, E., Mareczek, A., Leja, M. (2005). Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93(2), 223-226. DOI: https://doi.org/10.1016/j.foodchem.2004.09.020
  • 12. Ertaş, A., Gören, A.C., Haşimi, N., Tolan, V., Kolak, U. (2015). Evaluation of Antioxidant, Cholinesterase Inhibitory and Antimicrobial Properties of Mentha longifolia subsp. noeana and Its Secondary Metabolites. Records of Natural Products, 9, 1105-115.
  • 13. Moharram, H.A., Youssef, M.M. (2014). Methods for determining the antioxidant activity: a review. Alexandria Journal of Food Science and Technology, 11 (1), 31-42.
  • 14. Kamiloglu, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Hall, R.D., Capanoglu, E. (2016). A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 56(1), S110-29. DOI: https://doi.org/10.1080/10408398.2015.1045969
  • 15. Karam, M.C., Petit, J., Zimmer, D., Baudelaire-Djantou, E., Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. DOI: https://doi.org/10.1016/j.jfoodeng.2016.05.001
  • 16. Sagar, V.R., Suresh-Kumar, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 47(1), 15-26. DOI:https://doi.org/10.1007/s13197-010-0010-8
  • 17. Michalczyk, M., MacUra, R., Matuszak, I. (2009). The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. Journal of Food Processing and Preservation, 33(1), 11-21. DOI: https://doi.org/10.1111/j.1745-4549.2008.00232.x
  • 18. Oikonomopoulou, V.P., Krokida, M.K. (2013). Novel aspects of formation of food structure during drying. Drying Technology, 31 (9), 990-1007. DOI:https://doi.org/10.1080/07373937.2013.771186
  • 19. Shang, H.M., Zhou, H.Z., Li, R., Duan, M.Y., Wu, H.X., Lou, Y.J. (2017). Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.). PLoS One, 12(8), 1-18. DOI:https://doi.org/10.1371/journal.pone.0183001
  • 20. Strumillo, C., Adamiec, J. (1996). Energy and quality aspects of food drying. Drying Technology, 14(2), 423-448. DOI:https://doi.org/10.1080/07373939608917106
  • 21. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymology, 299, 152–178.
  • 22. Miser-Salihoglu, E., Akaydin, G., Caliskan-Can, E., Yardim-Akaydin, S. (2013). Evaluation of antioxidant activity of various herbal folk medicines. Journal of Nutrition, Food Sciences, 3, 222-31. DOI:https://doi.org/10.4172/2155-9600.1000222
  • 23. Apak, R., Güçlü, K., Ozyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981. DOI: https://doi.org/10.1021/jf048741x
  • 24. Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50, 3444-3452. DOI: https://doi.org/10.1021/jf011440s
  • 25. Oktay, M., Gulcin, I., Kufrevioglu O.I. (2003). Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Food Science and Technology, 36, 263-271. DOI: https://doi.org/10.1016/S0023-6438(02)00226-8
  • 26. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. DOI:https://doi.org/10.1016/S0891-5849(98)00315-3
  • 27. Fogliano, V., Verde, V., Randazzo, G., Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47, 1035-1040. DOI:https://doi.org/10.1021/jf980496s
  • 28. Govindarajan, R., Vijayakumar, M., Pushpangadan, P. (2005). Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. Journal of Ethnopharmacology, 99, 165-178. DOI: https://doi.org/10.1016/j.jep.2005.02.035
  • 29. Robards, K., Prenzler, P.D., Tucker, G., Swaitsitang, P., Glover, W. (1999). Phenolic compounds and their role in oxidative processes. Food Chemistry, 66, 401-436. DOI:https://doi.org/10.1016/S0308-8146(99)00093-X
  • 30. Papageorgiou, V., Mallouchos, A., Komaitis, M. (2008). Investigation of the antioxidant behavior of air- and freeze dried aromatic plant materials in relation to their phenolic content and vegetative cycle. Journal of Agricultural and Food Chemistry, 56(14), 5743-52. DOI:https://doi.org/10.1021/jf8009393
  • 31. Oh, J., Jo, H., Cho, A.R., Kim, S.J., Han, J. (2013). Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control, 31, 403-409. DOI:https://doi.org/10.1016/j.foodcont.2012.10.021 32. Uribe, E., Marín, D., Vega-Gálvez, A., Quispe-Fuentes, I., Rodríguez, A. (2016). Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chemistry, 190, 559-565. DOI:https://doi.org/10.1016/j.foodchem.2015.05.108
  • 33. Safaiee, P., Taghipour, A., Vahdatkhoram, F., Movagharnejad K. (2019). Extraction of phenolic compounds from Mentha aquatica: the effects of sonication time, temperature and drying method. Chemical Papers, 73, 3067–3073. DOI:https://doi.org/10.1007/s11696-019-00843-5
  • 34. Ferhat, M., Erol, E., Khadidja Aya Beladjila, Çetintaş, Y., Duru, M.E., Öztürk, M., Kabouche, A., Kabouche, Z. (2017). Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharmaceutical Biology, 55(1), 324-329. DOI:https://doi.org/10.1080/13880209.2016.1238488
  • 35. Orphanides, A., Goulas, V., Gekas, V. (2013). Effect of Drying Method on the Phenolic Content and Antioxidant Capacity of Spearmintn. Czech Journal of Food Sciences, 31(5),509–513. DOI:https://doi.org/10.17221/526/2012-CJFS
  • 36. Hayat, K. (2020). Impact of Drying Methods on the Functional Properties of Peppermint (Mentha piperita L.) Leaves. Science Letters, 8(1), 36-42.
  • 37. Okmen, A.S., Okmen, G., Arslan, A., Vurkun, M. (2017). Antibacterial Activities of Mentha piperita L. Extracts against bacteria isolated from soccer player’s shoes and its antioxidant activities. Indian Journal of Pharmaceutical Education and Research, 51(3), S163-S169. DOI:https://doi.org/10.5530/ijper.51.3s.5
  • 38. Antal, T., Figiel, A., Kerekes, B., Sikolya, L. (2011). Effect of Drying Methods on the Quality of the Essential Oil of Spearmint Leaves (Mentha spicata L.). Drying Technology, 29, 1836–1844.DOI:https://doi.org/10.1080/07373937.2011.606519
  • 39. Abascal, K., Ganora, L.,Yarnell, E. (2005). The Effect of Freeze-drying and its Implications for Botanical Medicine: A Review. Phytotherapy Research, 19(8), 655-60. DOI:https://doi.org/10.1002/ptr.1651
  • 40. Díaz-Maroto, M.C., Pérez-Coello, M.S., González-Viñas, M.A., Cabezudo, M.D. (2003). Influence of Drying on the Flavor Quality of Spearmint (Mentha spicata L.) M. CONSUELO. Journal of Agricultural and Food Chemistry, 51, 1265−1269. DOI: https://doi.org/10.1021/jf020805l
  • 41. Gao, Q.H., Wu, C.S.,Wang, M., Xu, B.N., Du, L.J. (2012). Effect of drying of jujubes (Ziziphus jujube Mill.) on the contents of sugars, organic acids, - tocopherol, -carotene and phenolic compounds. Journal of Agricultural and Food Chemistry, 60, 9642–9648. DOI: https://doi.org/10.1021/jf3026524
  • 42. Karaman, S., Toker, O.S., Cam, M., Hayta, M., Dogan, M., Kayacier, A. (2014). Bioactive and physicochemical properties of persimmon as affected by drying methods. Drying Technology, 32, 258–267. DOI:https://doi.org/10.1080/07373937.2013.821480