KOLON KANSERI HASTALARINDA İLAÇ ETKİLEŞİMLERİNİN YÖNETİMİ

Amaç: Kolon kanseri, dünya çapında en yaygın üçüncü kanser türüdür ve genellikle ileri yaşlarda ortaya çıkar. Yaşla birlikte komorbid hastalık riski de artabileceğinden, kolon kanseri hastalarının polifarmasi riski artmıştır. Hipertansiyon, kronik obstrüktif akciğer hastalığı, diyabet ve kardiyovasküler hastalık, kanser hastalarında sık görülen komorbiditelerdir. Yaşlı, komorbid rahatsızlıkları olan ve iki veya daha fazla ilaç alan hastalar, ilaç-ilaç etkileşimleri (İİE) için daha yüksek risk altındadır. Ayrıca kanser hastaları, sitotoksik ilaçların yan etkilerinin tedavisi için sıklıkla destekleyici bakım ilaçları gibi birçok ilacı kullanmaktadır. İİE'ler terapötik başarısızlığa veya potansiyel olarak ciddi yan etkilere neden olabilir. İİE düzeylerinin belirlenmesi ve değerlendirilmesi, kanser hastaları için en uygun akılcı tedavinin sağlanmasında yardımcı olmaktadır.

MANAGEMENT OF DRUG INTERACTIONS IN COLON CANCER PATIENTS

Objective: Colon cancer is the third most common cancer type globally and usually occurs at advanced ages. Since the risk of comorbid diseases may also increase with age, colon cancer patients have an increased risk of polypharmacy. Hypertension, chronic obstructive pulmonary disease, diabetes, and cardiovascular disease are the frequently seen comorbidities in cancer patients. Patients who are elderly, have comorbid conditions, and are taking two or more medications are at higher risk for drug-drug interactions (DDIs). Additionally, cancer patients frequently use many drugs such as supportive care drugs for the treatment of side effects of cytotoxic drugs. DDIs may cause therapeutic failure or potentially serious adverse events. determination and evaluation of DDI levels identify the most suitable rational therapy for cancer patients.

___

  • 1. Laban, A. A., Birand, N., Chukwunyere, U., Abdi, A., & Basgut, B. (2021). Evaluation of drug-drug interactions in cancer patients treated at a university hospital in North Cyprus using two interaction databases. Nigerian journal of clinical practice, 24(7), 1067–1071. [CrossRef] https://doi.org/10.4103/njcp.njcp_266_20
  • 2. Lavan, A. H., O'Mahony, D., Buckley, M., O'Mahony, D., & Gallagher, P. (2019). Adverse Drug Reactions in an Oncological Population: Prevalence, Predictability, and Preventability. The oncologist, 24(9), e968–e977. [CrossRef] https://doi.org/10.1634/theoncologist.2018-0476
  • 3. Montané, E., & Castells, X. (2021). Epidemiology of drug-related deaths in European hospitals: A systematic review and meta-analysis of observational studies. British journal of clinical pharmacology, 87(10), 3659–3671. [CrossRef] https://doi.org/10.1111/bcp.14799
  • 4. Ismail, M., Khan, S., Khan, F., Noor, S., Sajid, H., Yar, S., & Rasheed, I. (2020). Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy. BMC cancer, 20(1), 335. [CrossRef] https://doi.org/10.1186/s12885-020-06855-9 5. Capecitabine. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 6. https://reference.medscape.com/drug/xeloda-capecitabine-342211#3 Accessed Date: 18 Feb 2021
  • 7. Fluorouracil. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 8. https://reference.medscape.com/drug/adrucil-fluorouracil-342092#3 Accessed Date: 18 Feb 2021
  • 9. Ramírez, J., House, L. K., Karrison, T. G., Janisch, L. A., Turcich, M., Salgia, R., Ratain, M. J., & Sharma, M. R. (2019). Prolonged Pharmacokinetic Interaction Between Capecitabine and a CYP2C9 Substrate, Celecoxib. Journal of clinical pharmacology, 59(12), 1632–1640. [CrossRef] https://doi.org/10.1002/jcph.1476
  • 10. Salvador-Martín, S., García-González, X., García, M. I., Blanco, C., García-Alfonso, P., Robles, L., Grávalos, C., Pachón, V., Longo, F., Martínez, V., Sanjurjo-Sáez, M., & López-Fernández, L. A. (2018). Clinical utility of ABCB1 genotyping for preventing toxicity in treatment with irinotecan. Pharmacological research, 136, 133–139. [CrossRef] https://doi.org/10.1016/j.phrs.2018.08.026
  • 11. Fujita, K., Matsumoto, N., Ishida, H., Kubota, Y., Iwai, S., Shibanuma, M., & Kato, Y. (2019). Decreased Disposition of Anticancer Drugs Predominantly Eliminated via the Liver in Patients with Renal Failure. Current drug metabolism, 20(5), 361–376. [CrossRef] https://doi.org/10.2174/1389200220666190402143125
  • 12. de Man, F. M., Goey, A., van Schaik, R., Mathijssen, R., & Bins, S. (2018). Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clinical pharmacokinetics, 57(10), 1229–1254. [CrossRef] https://doi.org/10.1007/s40262-018-0644-7
  • 13. Irinotecan. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 14. https://reference.medscape.com/drug/camptosar-irinotecan-342252#3 Accessed Date: 18 Feb 2021
  • 15. Oxaliplatin. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 16. Barlow, A., Prusak, E. S., Barlow, B., & Nightingale, G. (2021). Interventions to reduce polypharmacy and optimize medication use in older adults with cancer. Journal of geriatric oncology, 12(6), 863–871. [CrossRef] https://doi.org/10.1016/j.jgo.2020.12.007
  • 17. Bevacizumab. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 18. https://reference.medscape.com/drug/avastin-mvasi-bevacizumab-342257#11 Accessed Date: 18 Feb 2021
  • 19. Ziv-Aflibercept. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 20. https://reference.medscape.com/drug/zaltrap-ziv-aflibercept-999765#5 Accessed Date: 18 Feb 2021
  • 21. Nivolumab. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 22. https://reference.medscape.com/drug/opdivo-nivolumab-999989#3 Accessed Date: 18 Feb 2021
  • 23. Pembrolizumab. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 24. https://reference.medscape.com/drug/keytruda-pembrolizumab-999962 Accessed Date: 18 Feb 2021
  • 25. Ramucirumab. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 26. https://reference.medscape.com/drug/cyramza-ramucirumab-999926 Accessed Date: 18 Feb 2021
  • 27. Regorafenib. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 28. https://reference.medscape.com/drug/stivarga-regorafenib-999774#3 Accessed Date: 18 Feb 2021
  • 29. Larotrectinib. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 30. https://reference.medscape.com/drug/vitrakvi-larotrectinib-1000260#3 Accessed Date: 18 Feb 2021
  • 31. Dabrafenib. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 32. https://reference.medscape.com/drug/tafinlar-dabrafenib-999853#3 Accessed Date: 18 Feb 2021
  • 33. Yin, H., Wang, Z., Wang, X., Lv, X., Fan, X., Yan, M., Jia, Y., Jiang, L., Cao, J., & Liu, Y. (2021). Inhibition of human UDP-glucuronosyltransferase enzyme by Dabrafenib: Implications for drug-drug interactions. Biomedical chromatography : BMC, 35(11), e5205. [CrossRef] https://doi.org/10.1002/bmc.5205
  • 34. Trametinib. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 18 Feb 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 35. https://reference.medscape.com/drug/mekinist-trametinib-999854#5 Accessed Date: 18 Feb 2021
  • 36. Trifluridine and tipiracil. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 19 Nov 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 37. Kopetz, S., Grothey, A., Yaeger, R., Cutsem, E.V., Desai, J., Yoshino, T. et al. (2019) Encorafenib, binimetinib, and cetuximab in BRAFV600E-mutated colorectal cancer. N Engl J Med. 381[17):1632-1643. [CrossRef] doi:10.1056/NEJMoa1908075.
  • 38. Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T. et al. Encorafenib plus cetuximab as a newstandard of care for previously treated BRAFV600E-mutant metastatic colorectal cancer:updated survival results and subgroup analyses from the BEACON study. J Clin Oncol,2021;39[4):273-284. [CrossRef] doi:10.1200/JCO.20.02088
  • 39. Encorafenib. In: Lexicomp online [database on the Internet). Hudson [OH): Lexicomp, Inc.; 2021 [cited 19 Nov 2021). Available from: http://online.lexi.com. Subscription required to view.
  • 40. Moghaddas, A., Adib-Majlesi, M., Sabzghabaee, A. M., Hajigholami, A., & Riechelmann, R. (2021). Potential drug-drug Interactions in hospitalized cancer patients: A report from the Middle-East. Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners, 27(1), 46–53. [CrossRef] https://doi.org/10.1177/1078155220910209
  • 41. Mouzon, A., Kerger, J., D'Hondt, L., & Spinewine, A. (2013). Potential interactions with anticancer agents: a cross-sectional study. Chemotherapy, 59(2), 85–92. [CrossRef] https://doi.org/10.1159/000351133
  • 42. Venkatesh, K.M., Swathi, A., Rajendra, H. (2021) Assessment of potential drug - Drug interaction among the patients receiving cancer chemotherapy: A cross-sectional study. Journal of Pharmacology and Pharmacotherapeutics. 12 (2):79-85[CrossRef] doi: 10.4103/jpp.jpp_16_21
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

KURUTMA YÖNTEMİNE GÖRE NANE BİTKİSİNİN FENOLİK İÇERİĞİNİN VE ANTİOKSİDAN AKTİVİTESİNİN KARŞILAŞTIRILMASI

Ece MİSER SALİHOĞLU, Bolkan ŞİMŞEK, Erdoğan ÇAYIR, Sevgi AKAYDIN

ENTEROKOK ENFEKSİYONLARINDA KULLANILMAK ÜZERE VANCOMİSİN İÇEREN PLGA NANOPARTİKÜLLERİN HAZIRLANMASI VE KARAKTERİZASYONU

Gizem Rüya TOPAL, Merve Eylül KIYMACI, Yalçın ÖZKAN

PATULİNİN KARACİĞER VE AKCİĞER KANSERİ HÜCRE HATLARI ÜZERİNDEKİ İN VİTRO ANTİTÜMÖR AKTİVİTESİ

Hande YÜCE, Neşe BAŞAK TÜRKMEN, Selinay ŞENKAL, Dilan AŞKIN ÖZEK, Ezgi BULUT, Ayşegül DOĞAN, Songül ÜNÜVAR

CONSOLIDA THIRKEANA EKSTRESİNİN GAZ KROMATOGRAFİSİ-KÜTLE SPEKTROMETRESİ (GC-MS) ANALİZİ

Kenan Can TOK, Şeyda YAYLA

DENEYSEL DİYABETİN NEDEN OLDUĞU DEPRESYON TEDAVİSİNDE MİNOSİKLİN VE MİNOSİKLİN+METFORMİN KULLANIMI

Merve İNCİ ÇAMÇİ, Meral ERDİNÇ, Emre UYAR, İlker KELLE

BAZI 1,2,4-TRİAZOL YOĞUNLAŞTIRILMIŞ TÜREVLERİNİN SENTEZİ, ÖZELLİKLERI VE BİYOLOJİK POTANSİYELİ

Andrey GOTSULYA, Tetiana BRYTANOVA

STAPHYLOCOCCUS AUREUS'UN KATI LİPİD NANOPARTİKÜLLER İLE ETKİLEŞİMİ

Merve Eylül KIYMACI

ASETONİTRİL-SU İKİLİ KARIŞIMLARINDA BAZI İMİDAZOL ANTİMİKOTİK İLAÇLARIN KROMATOGRAFİK PROTONASYON SABİTLERİNİN BELİRLENMESİ

Hayrettin SEÇİLMİŞ, Ebru ÇUBUK DEMİRALAY, Kader POTURCU

MS HASTALIĞININ TEDAVİSİ İÇİN YENİ SİKLOFİLİN D RESEPTÖR İNHİBİTÖRLERİNİN GELİŞTİRİLMESİ

Gozde YALCİN, Birsen HUYLU

DEKSRAZOKSANIN OLASI KARDİYOPROTEKTİF ETKİ MEKANİZMASI VE MUHTEMEL İNSAN TOPOİZOMERAZ IIΒ İNHİBİTÖRLERİ: İN SİLİCO ANALİZ

Fuat KARAKUŞ, Burak KUZU